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Unit 1 
Data Representation 

 
 
Number System 
Number of digits used in a number system is called its base or radix (r). We can categorize number system as 
below: 

- Binary number system (r = 2) 
- Octal Number System (r = 8) 
- Decimal Number System (r = 10) 
- Hexadecimal Number system (r = 16) 

Number system conversions (quite easy guys, do it on your own) 
 
Decimal Representation 
We can normally represent decimal numbers in one of following two ways 

- By converting into binary 
- By using BCD codes 

 
By converting into binary 
Advantage 
 Arithmetic and logical calculation becomes easy. Negative numbers can be represented easily.  

Disadvantage 
 At the time of input conversion from decimal to binary is needed and at the time of output conversion 

from binary to decimal is needed.  
 
Therefore this approach is useful in the systems where there is much calculation than input/output. 
 
By using BCD codes 

 
 
 
 
 
 
 
 
 
 
 
 

Disadvantage 
 Arithmetic and logical calculation becomes difficult to do. Representation of negative numbers is tricky.  

Advantage 
 At the time of input conversion from decimal to binary and at the time of output conversion from 

binary to decimal is not needed.  
 
Therefore, this approach is useful in the systems where there is much input/output than arithmetic and logical 
calculation. 
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Alphanumeric Representation 
Alphanumeric character set is a set of elements that includes the 10 decimal digits, 26 letters of the alphabet 
and special characters such as $, %, + etc. The standard alphanumeric binary code is ASCII(American Standard 
Code for Information Interchange) which uses 7 bits to code 128 characters (both uppercase and lowercase 
letters, decimal digits and special characters).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Complements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE:  Decimal digits in ASCII can be 
converted to BCD by removing the 
three higher order bits, 011. 
 

(r-1)'s Complement   
(r-1)'s complement of a number N is defined as 
(rn -1) –N 
Where  N is the given number 

r is the base of number system 
n is the number of digits in the given 
number 

To get the (r-1)'s complement fast, subtract each 
digit of a number from (r-1). 
 
Example:   

- 9's complement of 83510 is 16410  (Rule: 
(10n -1) –N) 

- 1's complement of 10102 is 01012 (bit by 
bit complement operation) 

 

r's Complement   
r's complement of a number N is defined as rn  –N 
Where  N is the given number 
 r is the base of number system 

n is the number of digits in the given 
number 

To get the r's complement fast, add 1 to the low-
order digit of its (r-1)'s complement. 
 
Example: 

- 10's complement of 83510 is 16410 + 1 = 
16510 

- 2's complement of 10102 is 01012 + 1 = 
01102 
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Subtraction of unsigned Numbers (Using complements) 
When subtraction is implemented in digital hardware, borrow-method is found to be less efficient than the 
method that uses complements. The subtraction of two n-digit unsigned numbers M-N (N≠0) in base r can be 
done as follows: 
 

  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is no end carry, so answer is negative 59282 = 10's complement of 40718. 
 

Subtraction with complements is done with binary numbers in similar manner using same procedure outlined 
above. 
NOTE: negative numbers are recognized by the absence of the end carry and the complemented result. 
 
Fixed-Point Representation 
Positive integers, including 0 can be represented as unsigned numbers. However for negative numbers, we use 
convention of representing left most bit of a number as a sign-bit: 0 for positive and 1 for negative. In addition, 
to represent fractions, integers or mixed integer-fraction numbers, number may have a binary (or decimal) 
point. There are two ways of specifying the position of a binary point in a resister: 

• by employing a floating-point notation.(discussed later) 
• by giving it a fixed position (hence the name) 

o A binary point in the extreme left of the resister to make the stored number a fraction. 
o A binary point in the extreme right of a resister to make the stored number an integer. 

 
Integer representation 
There is only one way of representing positive numbers with sign-bit 0 but when number is negative the sign is 
represented by 1 and rest of the number may be represented in one of three possible ways: 
 

• Signed magnitude representation 
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• Signed 1’s complement representation 
• Signed 2’s complement representation 

 
Signed magnitude representation of a negative number consists of the magnitude and a negative sign. In other 
two representations, the negative number is represented in either 1's or 2's complement of its positive value. 
 
Examples: Representing negative numbers 
 
  
 
 
 
 
 
 
 
Arithmetic addition and subtraction of signed numbers 
 
Addition 
Mostly signed 2's complement system is used. So, in this system only addition and complementation is used. 
Procedure:  add two numbers including sign bit and discard any carry out of the sign bit position. (note: 
negative numbers initially be in the 2's complement and that if the sum obtained after the addition is negative, 
it is in 2's complement form). 

 
 
 
 
 
 
 

Subtraction 
Subtraction of two signed binary numbers is done as: take the 2's complement of the subtrahend (including the 
sign bit) and add it to the minuend (including the sign-bit). The carry out of the sign bit position is discarded. 
 
Idea: subtraction operation can be changed to the addition operation if the sign of the subtrahend is changed: 

  
 
 
 

Example: (-6)-(-13) = +7, in binary with 8-bits this is written as: 
 -6    → 11111010 
 -13  → 11110011  (2's complement form) 
Subtraction is changed to addition by taking 2's complement of the subtrahend (-13) to give (+13).  
 -6    → 11111010 
 +13 → 00001101  
 --------------------- 
 +7 → 100000111 (discarding end carry). 
 
 

Signed Magnitude Notation 
 Complement only the 

sign bit 
 Example: 

+9  0 001001 
-9   1 001001 

 

Signed 1’s complement Notation  
 Complement all the bits 

including sign bit. 
 Example: 

+9  0 001001 
-9   1 110110 

 

Signed 2’s complement Notation 
 Take the 2's complement 

of the number, including 
its sign bit 

 Example: 
+9  0 001001 
-9  1 110111 

 

In each of the 4 cases, the operation performed 
is always addition, including the sign-bits. Any 
carry out of the sign bit is discarded and negative 
results are automatically in 2's complement form. 
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Overflow 
When two numbers of n digits are added and the sum occupies n+1 digits, we say that an overflow has 
occurred. A result that contains n+1 bits can't be accommodated in a resister with a standard length of n-bits. 
For this reason many computers detect the occurrence of an overflow setting corresponding flip-flop. 
An overflow may occur if two numbers added are both positive or both negative. For example: two signed 
binary numbers +70 and +80 are stored in two 8-bit resisters.  

 
  
 
 
 

Since the sum of numbers 150 exceeds the capacity of the resister (since 8-bit resister can store values ranging 
from +127 to -128), hence the overflow. 
 
Overflow detection 
An overflow condition can be detected by observing two carries: carry into the sign bit position and carry out of 
the sign bit position.  

Hey boys, consider example of above 8-bit resister, if we take the carry out of the sign bit position as a sign 
bit of the result, 9-bit answer so obtained will be correct. Since answer can not be accommodated within 8-bits, 
we say that an overflow occurred. 
 
If these two carries are equal ==> no overflow 
If these two carries are not same ==> overflow condition is produced. 
 
If two carries are applied to an exclusive-OR gate, an overflow will be detected when output of the gate is equal 
to 1. 
 
Decimal Fixed-Point Representation 
Decimal number representation = f(binary code used to represent each decimal digit). Output of this function is 
called the Binary coded Decimal (BCD). A 4-bit decimal code requires 4 flip-flops for each decimal digit. 
Example: 4385 = (0100 0011 1000 0101)BCD 

 
While using BCD representation, 
Disadvantages:  

• wastage of memory (Viz. binary equivalent of 4385 uses less bits than its BCD representation) 
• Circuits for decimal arithmetic are quite complex. 

Advantages: 
• Eliminate the need for conversion to binary and back to decimal. (since applications like Business data 

processing requires less computation than I/O of decimal data, hence electronic calculators perform 
arithmetic operations directly with the decimal data (in binary code)) 

For the representation of signed decimal numbers in BCD, sign is also represented with 4-bits, plus with 4 0's 
and minus with 1001 (BCD equivalent of 9). Negative numbers are in 10's complement form. 
 
Consider the addition: (+375) + (-240) = +135  [0positive, 9negative in case of radix 10] 
      0 375   (0000 0011 0111 0101)BCD 

                                                           + 9 760    (1001 0111 0110 0000)BCD 

                                                        -- ----------------------------------------- 
     0 135    (0000 0001 0011 0101)BCD 
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Floating-Point Representation 
The floating-point representation of a number has two parts: mantissa and exponent 
Mantissa   : represents a signed, fixed-point number. May be a fraction or an integer 
Exponent: designates the position of the decimal (or binary) point 
 
Example1: decimal number +6132.789 is represented in floating-point as: 
   Fraction  exponent 
           +0.6132789 +04 
Floating-point is interpreted to represent a number in the form:  m * re. Only the mantissa m and exponent e 
are physically represented in resisters. The radix r and the radix-point position are always assumed. 
Example2: binary number +1001.11 is represented with an 8-bit fraction and 6-bit exponent as, 
   Fraction  exponent 
           +01001110 000100 
or equivalently, 
   m * 2e  = +(.1001110)2 * 2+4 

Normalization 
A floating-point number is said to be normalized if the most significant digit of the mantissa is nonzero. For 
example, decimal number 350 is normalized but 00035 is not. 
 
 
Other Binary codes 
Most common type of binary-coded data found in digital computer is explained before. A few additional binary 
codes used in digital systems (for special applications) are explained below. 
 
Gray code 
The reflected binary or Gray code is used to represent digital data converted from analog information.  Gray 
code changes by only one bit as it sequences from one number to the next. 
 

 
Table: 4-bit Gray code 

Weighted code (2421)  
2421 is an example of weighted code. In this, corresponding bits are multiplied by the weights indicated and 
the sum of the weighted bits gives the decimal digit. 
Example: 1101 when weighted by the respective digits 2421 gives 2*1+4*1+2*0+1*1 = 7. 
 
NOTE: Ladies and gentlemen…, you have already studied about BCD codes. BCD can be assigned the weights 
8421 and for this reason it is sometimes called 8421 code. 
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Excess-3 codes 
The excess-3 code is a decimal code used in older computers. This is un-weighted code. 
Excess-3 code = BCD binary equivalent + 3(0011)  
NOTE: excess-n code is possible adding n to the corresponding BCD equivalent. 
 
Excess-3 Gray 
In ordinary Gray code, the transition from 9 back to 0 involves a change of three bits (from 1101 to 0000). To 
overcome this difficulty, we start from third entry 0010 (as first number) up to the twelfth entry 1010, there by 
change of only one bit is possible upon transition from 1010 to 0010. Since code has been shifted up three 
numbers, it is called the excess-3 Gray. 
 

 
Table: 4 different binary codes for the decimal digit 

 
Error Detection Codes 
Binary information transmitted through some form of communication medium is subject to external noise that 
could change bits from 1 to 0 and vice versa. An error detection code is a binary code that detects digital errors 
during transmission. The detected errors can not be corrected but their presence is indicated. The most 
common error detection code used is the parity bit. A parity bit(s) is an extra bit that is added with original 
message to detect error in the message during data transmission. 
 
Even Parity 
One bit is attached to the information so that the total number of 1 bits is an even number. 
 
                      Message    Parity 
                      1011001       0 
                      1010010       1 
Odd Parity 
One bit is attached to the information so that the total number of 1 bits is an odd number. 
 
                      Message    Parity 
                      1011001       1 
                      1010010       0 
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Parity generator 
Parity generator and checker networks are logic circuits constructed with exclusive-OR functions. Consider a 3-
bit message to be transmitted with an odd parity bit. At the sending end, the odd parity is generated by a parity 
generator circuit. The output of the parity checker would be 1 when an error occurs i.e. no. of 1’s in the four 
inputs is even. 
 
P = x⊕y⊕z 
 

Message (xyz) Parity bit (odd) 
000 1 
001 0 
010 0 
011 1 
100 0 
101 1 
110 1 
111 0 

 
Parity Checker 
Considers original message as well as parity bit 
e = p⊕x⊕y⊕z 
e= 1 => No. of 1’s in pxyz  is even => Error in data 
e= 0 => No. of 1’s in pxyz  is odd => Data is error free 
 
Circuit diagram for parity generator and parity checker 
 

 
Fig: Error detection with odd parity bit. 
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EXERCISES: Text Book chapter3 3.15, 3.17, 3.22, 3.26 
 
3.15 (Solution) 

 
3.17 HINT: see notes 
3.22 (Solution) 

 
3.26 (Solution) 
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Unit 2 
Microoperations 

 
Combinational and sequential circuits can be used to create simple digital systems. These are the low-level 
building blocks of a digital computer. The operations on the data in registers are called microoperations. 
Examples of micro-operations are 

 
• Shift 
• Load 
• Clear 
• Increment 

 
Alternatively we can say that an elementary operation performed during one clock pulse on the information 
stored in one or more registers is called micro-operation. The result of the operation may replace the previous 
binary information of the resister or may be transferred to another resister. Register transfer language can be 
used to describe the (sequence of) micro-operations. 
 
Microoperation types 
The microoperations most often encountered in digital computers are classified into 4 categories:  
 

1. Register transfer microoperations 
2. Arithmetic microoperations 
3. Logic microoperations 
4. Shift microoperations 
 

1.   Resister transfer microoperations 
Registers are designated by capital letters, sometimes followed by numbers (e.g., A, R13, IR). Often the names 
indicate function: 

MAR memory address register 
PC program counter 
IR instruction register 
 

Information transfer from one register to another is described in symbolic form by replacement operator. The 
statement “R2 R1” denotes a transfer of the content of the R1 into resister R2. 
 
Control Function 
Often actions need to only occur if a certain condition is true. In digital systems, this is often done via a control 
signal, called a control function. 
 
Example:            P:  R2  R1    i.e. if (P = 1) then  (R2 R1) 
                            Which means “if P = 1, then load the contents of register R1 into register R2”. 
If two or more operations are to occur simultaneously, they are separated with commas. 
 
Example:       P:    R3  R5, MAR  IR 
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2.   Arithmetic microoperations 
 

• The basic arithmetic microoperations are 
– Addition 
– Subtraction 
– Increment 
– Decrement 

• The additional arithmetic microoperations are 
– Add with carry 
– Subtract with borrow 
– Transfer/Load 

 
Summary of typical arithmetic microoperations 
 

 
 
 
 
 
 
 
 
 
 
 

 
Binary Adder 
To implement the add microoperation with hardware, we need the resisters that hold the data and the digital 
component that performs the arithmetic addition. The digital circuit that generates the arithmetic sum of two 
binary numbers of any lengths is called Binary adder. The binary adder is constructed with the full-adder circuit 
connected in cascade, with the output carry from one full-adder connected to the input carry of the next full-
adder. 

 
 
 
  
 
 
 
 
 

 
Fig.: 4-bit binary adder 

 
An n-bit binary adder requires n full-adders. The output carry from each full-adder is connected to the input 
carry of the next-high-order-full-adder. Inputs A and B come from two registers R1 and R2. 
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Binary Subtractor 
The subtraction A – B can be done by taking the 2's complement of B and adding to A. It means if we use the 
inverters to make 1’s complement of B (connecting each Bi to an inverter) and then add 1 to the least significant 
bit (by setting carry C0 to 1) of binary adder, then we can make a binary subtractor. 
 

 
fig.: 4-bit binary subtractor 

Binary Adder-Subtractor 
Question: How binary adder and subtractor can be accommodated into a single circuit? explain. 
The addition and subtraction operations can be combined into one common circuit by including an exclusive-OR 
gate with each full-adder. 
 

 Fig.: 4-bit adder-subtractor 
 
 
The mode input M controls the operation the operation. When M=0, the circuit is an adder and when M=1 the 
circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of B. 

• When M=0:   B ⊕ M = B ⊕ 0 = B, i.e. full-adders receive the values of B, input carry is B and circuit 
performs A+B. 

• When M=1:     B ⊕ M = B ⊕ 1 = B' and C0= 1, i.e. B inputs are all complemented and 1 is added through 
the input carry. The circuit performs A + (2's complement of B). 
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Binary Incrementer 
The increment microoperation adds one to a number in a register. For example, if a 4-bit register has a binary 
value 0110, it will go to 0111 after it is incremented. Increment microoperation can be done with a 
combinational circuit (half-adders connected in cascade) independent of a particular register. 

 
 
 
 
 

Fig.: 4-bit binary Incrementer 
 
 
 
 
 

 
Arithmetic Circuit 
The arithmetic microoperations can be implemented in one composite arithmetic circuit. By controlling the 
data inputs to the adder (basic component of an arithmetic circuit), it is possible to obtain different types of 
arithmetic operations. 
 
In the circuit below contains: 

• 4 full-adders 
• 4 multiplexers (controlled by selection inputs S0 and S1) 
• two 4-bit inputs A and B and a 4-bit output D 
• Input carry cin goes to the carry input of the full-adder.  

 
Output of the binary adder is calculated from the arithmetic sum:  D = A + Y + cin .  
 
By controlling the value of Y with the two selection inputs S1 & S0 and making cin= 0 or 1, it is possible to 
generate the 8 arithmetic microoperations listed in the table below: 
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Fig: 4-bit arithmetic circuit 
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3.  Logic microoperations 
Question: What do you mean by Logic microoperations? Explain with its applications. 
Question: How Logic microoperations can be implemented with hardware? 
Logic microoperations are bit-wise operations, i.e., they work on the individual bits of data. Useful for bit 
manipulations on binary data and for making logical decisions based on the bit value. There are, in principle, 16 
different logic functions that can be defined over two binary input variables. However, most systems only 
implement four of these 

– AND (^), OR (۷), XOR (⊕), Complement/NOT 
The others can be created from combination of these four functions. 
 
Hardware implementation 
Hardware implementation of logic microoperations requires that logic gates be inserted be each bit or pair of 
bits in the resisters to perform the required logic operation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Applications of Logic Microoperations 
 
Logic microoperations can be used to manipulate individual bits or a portion of a word in a register. Consider 
the data in a register A. Bits of register B will be used to modify the contents of A. 
 

– Selective-set                        A  A + B 
– Selective-complement      A  A ⊕ B  
– Selective-clear      A  A • B’  
– Mask (Delete)     A  A • B 
– Clear     A  A ⊕ B 
– Insert         A  (A • B) + C 
– Compare    A  A ⊕ B 
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Selective-set 
In a selective set operation, the bit pattern in B is used to set certain bits in A. 
   1 1 0 0 At 

              1 0 1 0 B 
       --------------------- 
   1 1 1 0 At+1  (A  A + B) 
Bits in resister A are set to 1 when there are corresponding 1's in resister B. It does not affect the bit positions 
that have 0's in B. 

 
Selective-complement 
In a selective complement operation, the bit pattern in B is used to complement certain bits in A. 
   1 1 0 0 At 

   1 0 1 0 B 
   --------------------- 
   0 1 1 0 At+1  (A  A ⊕ B) 
If a bit in B is 1, corresponding position in A get complemented from its original value, otherwise it is 
unchanged. 
 
Selective-clear  
In a selective clear operation, the bit pattern in B is used to clear certain bits in A. 
  1 1 0 0  At 

  1 0 1 0  B 
  ---------------------- 
  0 1 0 0  At+1  (A  A • B') 
If a bit in B is 1, corresponding position in A is set to 0, otherwise it is unchanged. 
 
Mask Operation 
In a mask operation, the bit pattern in B is used to clear certain bits in A.  
  1 1 0 0  At 

  1 0 1 0  B 
  ---------------------- 
  1 0 0 0  At+1  (A  A • B) 
If a bit in B is 0, corresponding position in A is set to 0, otherwise it is unchanged. This is achieved logically 
ANDing the corresponding bits of A and B. 
 
Clear Operation 
In clear operation, if the bits in the same position in A and B same, that bit in A is cleared (putting 0 there), 
otherwise same bit in A is set(putting 1 there). This operation is achieved by exclusive-OR microoperation. 
  1 1 0 0  At 

  1 0 1 0  B 
  ---------------------- 
  0 1 1 0  At+1  (A  A ⊕ B) 
 
Insert Operation 
An insert operation is used to introduce a specific bit pattern into A register, leaving the other bit positions 
unchanged. 
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This is done as 
– A mask (ANDing) operation to clear the desired bit positions, followed by 
– An OR operation to introduce the new bits into the desired positions 
– Example 

» Suppose you want to introduce 1010 into the low order four bits of A:  
 
 1101 1000 1011 0001 A (Original)    
 1101 1000 1011 1010 A (Desired) 
 
 1101 1000 1011 0001  A (Original) 
 1111 1111 1111 0000  B (Mask) 
 --------------------------- 
 1101 1000 1011 0000  A (Intermediate) 
 0000 0000 0000 1010  Added bits 
 --------------------------- 
 1101 1000 1011 1010  A (Desired) 
 

4.   Shift microoperations 
Question: What do you mean by shift microoperations? Explain its types. 
Question: Is there a possibility of Overflow during arithmetic shift? If yes, how it can be detected? 
Shift microoperations are used for serial transfer of data. They are also used in conjunction with arithmetic, 
logic and other data processing operations. The contents of a resister can be shifted left or right. There are 
three types of shifts 

1. Logical shift 
2. Circular shift 
3. Arithmetic shift 

 

Right Shift Operation 

 
Left shift operation 

 
 

1.  Logical shift  
A logical shift is one that transfers 0 through the serial input. In a Register Transfer Language, the following 
notation is used 

– shl for a logical shift left 
– shr for a logical shift right  

 
Examples: 

R2  shr R2 

Serial 
input 

Serial 
input 
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R3  shl R3 

 
 

Logical right shift (shr) 

 
 

Logical left shift (shl) 
 

2.  Circular Shift (rotate operation) 
Circular-shift circulates the bits of the resister around the two ends without the loss of information.  
 
Right circular shift operation 
 

 
 
Left circular shift operation: 
 

 
 
In a RTL, the following notation is used 

• cil   for a circular shift left 
• cir for a circular shift right  
• Examples: 

R2  cir R2 
R3  cil R3 

3.  Arithmetic shift 
An arithmetic shift is meant for signed binary numbers (integer). An arithmetic left shift multiplies a signed 
number by 2 and an arithmetic right shift divides a signed number by 2. Arithmetic shifts must leave the sign bit 
unchanged because the sign of the number remains the same when it is multiplied or divided by 2. The left 
most bit in a resister holds a sign bit and remaining hold the number. Negative numbers are in 2's complement 
form. 
In a Resister Transfer Language, the following notation is used 

– ashl   for an arithmetic shift left 
– ashr for an arithmetic shift right  
– Examples: 

» R2  ashr R2 
» R3  ashl R3 

0 

0 
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Arithmetic shift-right 
Arithmetic shift-right leaves the sign bit unchanged and shifts the number (including a sign bit) to the right. 
Thus Rn-1 remains same; Rn-2 receives input from Rn-1 and so on. 
 

 
 
 
 
 
 

Arithmetic shift-left 
Arithmetic shift-left inserts a 0 into R0 and shifts all other bits to left. Initial bit of Rn-1 is lost and replaced by the 
bit from Rn-2. 
 
Overflow case during arithmetic shift-left: 
If a bit in Rn-1 changes in value after the shift, sign reversal occurs in the result. This happens if the multiplication 
by 2 causes an overflow. 
Thus, left arithmetic shift operation must be checked for the overflow: an overflow occurs after an arithmetic 
shift-left if before shift Rn-1≠Rn-2.  
 

 
 
Hardware implementation of shift microoperations 
A combinational circuit shifter can be constructed with multiplexers as shown below: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig: 4-bit combinational circuit shifter 

V 
Before the shift, if the leftmost 
two bits differ, the shift will 
result in an Overflow 

 
An overflow flip-flop V can be used to 
detect an arithmetic shift-left overflow. 
  V =  Rn-1 ⊕  Rn-2 

If V = 0, there is no overflow but if V = 1, 
overflow is detected. 
 

 It has 4 data inputs A0 through A3 

and 4 data outputs H0 through H3. 
  There are two serial inputs, one for 

shift-left (IL) and other for shift-right 
(IR). 

 When S = 0: input data are shifted 
right (down in fig). 

 When S = 1: input data are shifted 
left (up in fig). 
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Arithmetic Logic Shift Unit 
This is a common operational unit called arithmetic logic unit (ALU). To perform a microoperation, the contents 
of specified registers are placed in the inputs of the common ALU. The ALU performs the operation and transfer 
result to destination resister. 

 

 
 

 Fig: One stage of arithmetic logic shift unit 
 

 

 
 

Table: Function table for Arithmetic logic shift unit 

 A particular microoperation is 
selected with inputs s1 and s0.  

 A 4x1 MUX at the output chooses 
between an arithmetic output in Di 
and logic output Ei. 

 Other two inputs to the MUX receive 
inputs Ai-1 for right-shift operation 
and Ai+1 for left-shift operation. 

 The diagram shows just one typical 
stage. The circuit must be repeated n 
times for an n-bit ALU. 

 

This circuit provides 8 arithmetic 
operations, 4 logic operations and 2 
shift operations. Each operation is 
selected with five variables s3, s2, s1, 
s0 and cin. The input carry cin is used 
for arithmetic operations only. Table 
below lists the 14 operations of the 
ALU. 
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EXERCISES: Textbook chapter 4  4.8, 4.13, 4.17, 4.18, 4.19, 4.21 
 
4.8(Solution) 

 
4.13(Solution) 

 
 
4.17(Solution) 

 
4.18(Solution) 

 
4.19(do it yourself) 
4.21(do it too) 
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Unit 3 
Basic Computer Organization and Design 

 
 

Introduction 
We introduce here a basic computer whose operation can be specified by the resister transfer 
statements. Internal organization of the computer is defined by the sequence of microoperations it 
performs on data stored in its resisters. Every different processor type has its own design (different 
registers, buses, microoperations, machine instructions, etc). Modern processor is a very complex 
device. It contains: 

– Many registers 
– Multiple arithmetic units, for both integer and floating point calculations 
– The ability to pipeline several consecutive instructions for execution speedup. 

However, to understand how processors work, we will start with a simplified processor model. M. 
Morris Mano introduces a simple processor model; he calls it a “Basic Computer”. The Basic Computer 
has two components, a processor and memory 

• The memory has 4096 words in it 
– 4096 = 212, so it takes 12 bits to select a word in memory 

• Each word is 16 bits long 
 
Instruction code and Stored program organization 
Question: What do you understand by stored program organization? 
Question: What is instruction and instruction format? 
Instruction code is a group of bits that instructs the computer to perform a specific operation. It is 
usually divided into parts. Most basic part is operation (operation code). Operation code is group of 
bits that defines operations as add, subtract, multiply, shift, complement etc. The instructions of a 
program, along with any needed data are stored in memory. The CPU reads the next instruction from 
memory. It is placed in an Instruction Register (IR). Control circuitry in control unit then translates the 
instruction into the sequence of microoperations necessary to implement it. Stored program concept 
is the ability to store and execute instructions. 
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Instruction Format of Basic Computer 
A computer instruction is often divided into two parts 

– An opcode (Operation Code) that specifies the operation for that instruction 
– An address that specifies the registers and/or locations in memory to use for that 

operation 
In the Basic Computer, since the memory contains 4096 (= 212) words, we needs 12 bit to specify the 
memory address that is used by this instruction. In the Basic Computer, bit 15 of the instruction 
specifies the addressing mode (0: direct addressing, 1: indirect addressing). Since the memory words, 
and hence the instructions, are 16 bits long, that leaves 3 bits for the instruction’s opcode. 

 
 

 
 
 
 
 

Addressing Modes 
The address field of an instruction can represent either 

– Direct address: the address operand field is effective address (the address of the 
operand) or, 

– Indirect address: the address in operand field contains the memory address where 
effective address resides.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effective Address (EA): The address, where actual data resides is called effective address. 
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Basic Computer Registers 
Computer instructions are normally stored in the consecutive memory locations and are executed 
sequentially one at a time. Thus computer needs processor resisters for manipulating data and 
holding memory address which are shown in the following table: 
 

Symbol Size Register Name Description 
DR 16        Data Register Holds memory operand 
AR 12        Address Register         Holds address for memory 
AC 16        Accumulator Processor register 
IR 16      Instruction Register     Holds instruction code 
PC 12        Program Counter Holds address of instruction 
TR 16         Temporary Register     Holds temporary data 
INPR 8         Input Register              Holds input character 
OUTR 8 Output Register            Holds output character 

 
Since the memory in the Basic Computer only has 4096 (=212) locations, PC and AR only needs 12 bits 
Since the word size of Basic Computer only has 16 bit, the DR, AC, IR and TR needs 16 bits. The Basic 
Computer uses a very simple model of input/output (I/O) operations 

– Input devices are considered to send 8 bits of character data to the processor 
– The processor can send 8 bits of character data to output devices 

The Input Register (INPR) holds an 8 bit character gotten from an input device and the Output Register 
(OUTR) holds an 8 bit character to be sent to an output device. 
 
Common Bus system of Basic computer 
The registers in the Basic Computer are connected using a bus. This gives a savings in circuitry over 
complete connections between registers. Three control lines, S2, S1, and S0 control which register the 
bus selects as its input. 
 

 
 S2 S1 S0 Register 

0   0   0  X (nothing) 
0   0   1     AR 
0   1   0     PC 
0   1   1  DR 
1   0   0    AC 
1   0   1    IR 
1   1   0     TR 
1   1   1    Memory 

Either one of the registers will have its load signal 
activated, or the memory will have its read signal 
activated which will determine where the data 
from the bus gets loaded. The 12-bit registers, AR 
and PC, have 0’s loaded onto the bus in the high 
order 4 bit positions. When the 8-bit register OUTR 
is loaded from the bus, the data comes from the 
low order 8 bits on the bus. 
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Fig: Basic computer resister connected in a common bus. 
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Instruction Formats of Basic Computer 
Question: What are different instruction format used basic computer? 
Question: What is instruction set completeness? Is instruction set of basic computer complete? 
The basic computer has 3 instruction code formats. Type of the instruction is recognized by the 
computer control from 4-bit positions 12 through 15 of the instruction. 
 

 

 
 

 

 
 

 

 
 

Instruction Set Completeness 
An instruction set is said to be complete if it contains sufficient instructions to perform operations in 
following categories: 



 Page 6 
 

Functional Instructions 
• Arithmetic, logic, and shift instructions 
• Examples: ADD, CMA, INC, CIR, CIL, AND, CLA 

Transfer Instructions 
• Data transfers between the main memory and the processor registers 
• Examples: LDA, STA 

Control Instructions 
• Program sequencing and control 
• Examples: BUN, BSA, ISZ 

Input/output Instructions 
• Input and output 
• Examples: INP, OUT 

 
Instruction set of Basic computer is complete because: 
 ADD, CMA (complement), INC can be used to perform addition and subtraction and CIR 

(circular right shift), CIL (circular left shift) instructions can be used to achieve any kind of shift 
operations. Addition subtraction and shifting can be used together to achieve multiplication 
and division. AND, CMA and CLA (clear accumulator) can be used to achieve any logical 
operations. 

 LDA instruction moves data from memory to register and STA instruction moves data from 
register to memory. 

 The branch instructions BUN, BSA and ISZ together with skip instruction provide the 
mechanism of program control and sequencing. 

 INP instruction is used to read data from input device and OUT instruction is used to send data 
from processor to output device. 

 
Instruction Processing & Instruction Cycle (of Basic computer) 
 
Control Unit 
Control unit (CU) of a processor translates from machine instructions to the control signals for the 
microoperations that implement them. There are two types of control organization: 
Hardwired Control 
 CU is made up of sequential and combinational circuits to generate the control signals. 
 If logic is changed we need to change the whole circuitry 
 Expensive 
 Fast 

Microprogrammed Control 
 A control memory on the processor contains microprograms that activate the necessary 

control signals 
 If logic is changed we only need to change the microprogram 
 Cheap 
 Slow 

 
NOTE: Microprogrammed control unit will be discussed in next chapter. 
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Question: How basic computer translates machine instructions to control signals using hardwired 
control? Explain with block diagram. (OR Discuss hardwired control unit of basic computer?) 
The block diagram of a hardwired control unit is shown below. It consists of two decoders, a sequence 
counter, and a number of control logic gates. 
 

 
Fig: Control unit of a basic computer 

 
 

Timing signals 
 Generated by 4-bit sequence counter and 4x16 decoder. 
 The SC can be incremented or cleared. 
 Example: T0, T1, T2, T3, T4, T0, T1 . . . 

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active: D3T4: SC 0 

 
 
 

Clock
T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR 
SC

Mechanism:  
 An instruction read from memory is 

placed in the instruction resister 
(IR) where it is decoded into three 
parts: I bit, operation code and bits 
0 through 11. 

 The operation code bit is decoded 
with 3 x 8 decoder producing 8 
outputs D0 through D7. 

 Bit 15 of the instruction is 
transferred to a flip-flop I. 

 And operand bits are applied to 
control logic gates. 

 The 16 outputs of 4-bit sequence 
counter (SC) are decoded into 16 
timing signals T0 through T15.  

This means instruction cycle of basic 
computer can not take more than 16 
clock cycles. 
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Instruction cycle 
In Basic Computer, a machine instruction is executed in the following cycle: 

1. Fetch an instruction from memory 
2. Decode the instruction 
3. Read the effective address from memory if the instruction has an indirect address 
4. Execute the instruction 

Upon the completion of step 4, control goes back to step 1 to fetch, decode and execute the next 
instruction. This process is continued indefinitely until HALT instruction is encountered. 
 
Fetch and decode 
The microoperations for the fetch and decode phases can be specified by the following resister 
transfer statements: 

 
 

 
 

Fig: Resister transfers for the fetch phase 
 
 
 

It is necessary to transfer the 
address from PC to AR during 
clock transition associated with 
the timing signal T0. The 
instruction read from memory is 
then placed in IR with clock 
transition associated with the 
timing signal T1. At the same 
time, PC is incremented by one 
to prepare for the next 
instruction in the program. At 
time T2, the opcode in IR is 
decoded, the indirect bit is 
transferred to flip-flop I, and the 
address part of the instruction is 
transferred to AR. 
 
NOTE: SC is incremented after 
each clock pulse to produce the 
sequence T0, T1 and T2. 
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Determine the type of the instruction 
The timing signal that is active after decoding is T3. During time T3, the control unit determines the 
type of instruction that was just read from memory. Following flowchart presents an initial 
configuration for the instruction cycle and shows how the control determines the instruction type 
after decoding.  
 

 
 

Fig: Flowchart for instruction cycle (Initial configuration) 
 
 
Resister transfers needed for the execution of resister-reference and memory-reference instructions 
are explained below: (I/O instructions will be discussed later) 
Resister-reference instructions: 
Register Reference Instructions are recognized with 

- D7 = 1,  I = 0 
- Register Ref. Instr. is specified in b0 ~ b11 of IR 
- Execution starts with timing signal T3 

Let 
r = D7 I’T3   => Common to all Register Reference Instruction 
Bi = IR (i), i=0, 1, 2... 11. [Bit in IR(0-11) that specifies the operation] 
 
CLA rB11: AC ← 0, SC ← 0     Clear AC 
CLE rB10: E ← 0, SC ← 0      Clear E 

The three instruction types are subdivided 
into four separate paths: 
 
 D'7IT3: AR M[AR]  (Indirect address) 
 D'7I'T3: Nothing 
 D7I'T3: Execute register-reference instrs. 
 D7IT3: Execute input-output instructions. 
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CMA rB9: AC ← AC’, SC ← 0     Complement AC 
CME rB8: E ← E’, SC ← 0      Complement E 
CIR rB7: AC ← shr AC, AC(15) ← E, E ← AC(0), SC ← 0 Circulate right 
CIL rB6: AC ← shl AC, AC(0) ← E, E ← AC(15), SC← 0  Circulate Left 
INC rB5: AC ← AC + 1, SC ← 0     Increment AC 
SPA rB4: if (AC(15) = 0) then (PC ← PC+1), SC ← 0  Skip if positive 
SNA rB3: if (AC(15) = 1) then (PC ← PC+1), SC ← 0  skip if negative 
SZA rB2: if (AC = 0) then (PC ← PC+1), SC ← 0   skip if AC zero 
SZE rB1: if (E = 0) then (PC ← PC+1), SC ← 0   skip if E zero 
HLT rB0: S ← 0, SC ← 0   (S is a start-stop flip-flop)  Halt computer 
 
Memory-reference instructions 
 Once an instruction has been loaded to IR, it may require further access to memory to perform its 

intended function (direct or indirect). 
 The effective address of the instruction is in the AR and was placed their during: 

- Time signal T2 when I = 0 or 
- Time signal T3 when I = 1 

 Execution of memory reference instructions starts with the timing signal T4. 
 Described symbolically using RTL. 
 

Symbol Operation Decoder Symbolic Description 
  AND D0 AC ←  AC ∧ M[AR] 
  ADD D1 AC ←  AC + M[AR], E ← Cout 
  LDA D2 AC ←  M[AR] 
  STA D3 M[AR] ←  AC 
  BUN D4 PC ←  AR 
  BSA D5 M[AR] ←  PC, PC ← AR + 1 
  ISZ D6 M[AR] ←  M[AR] + 1, if M[AR] + 1 = 0 then PC ← PC+1 
 
AND to AC 
This instruction performs the AND logical operation on pairs of bits on AC and the memory word 
specified by the effective address. The result is transferred to AC. Microoperations that execute these 
instructions are: 
D0T4: DR ← M[AR]     //Read operand 
D0T5: AC ←AC ∧ DR, SC ← 0    //AND with AC 
 
ADD to AC 
D1T4: DR ← M[AR]     //Read operand 
D1T5: AC ← AC + DR, E ← Cout, SC ← 0  //Add to AC and stores carry in E 
 
LDA: Load to AC 
D2T4: DR ← M[AR]     //Read operand 
D2T5: AC ← DR, SC ← 0    //Load AC with DR 
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STA: Store AC 
D3T4: M[AR] ← AC, SC ← 0    // store data into memory location 
 
BUN: Branch Unconditionally 
D4T4: PC ← AR, SC ← 0    //Branch to specified address 
 
BSA: Branch and Save Return Address  
D5T4: M[AR] ← PC,  AR ← AR + 1    // save return address and  increment AR 
D5T5: PC ← AR, SC ← 0     // load PC with AR 
 
ISZ: Increment and Skip-if-Zero 
D6T4: DR ← M[AR]     //Load data into DR  
D6T5: DR ← DR + 1     // Increment the data 
D6T4: M[AR] ← DR,  if (DR = 0) then (PC ← PC + 1),  SC ← 0 

// if DR=0 skip next instruction by incrementing PC 
 
 
Input-Output and Interrupt 
In computer, instructions and data stored in memory come from some input device and 
Computational results must be transmitted to the user through some output device.  
 
Input-output configuration 
The terminal sends and receives serial information. Each quantity of information has 8 bits of an 
alphanumeric code. Two basic computer resisters INPR and OUTR communicate with a communication 
interfaces. 
 

 
Fig: Input-output configuration 

 
 

 INPR: Input register - 8 bits 
 OUTR: Output register- 8 bits 
 FGI: Input flag - 1 bit (Is a 

control flip-flop, set to 1 
when new information is 
available) 

 FGO: Output flag - 1 bit 
 IEN: Interrupt enable - 1 bit 
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Scenario1: when a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR and 
the input flag FGI is set to 1. As long as the flag is set, the information in INPR can not be changed by 
striking another key. The control checks the flag bit, if 1, contents of INPR is transferred in parallel to 
AC and FGI is cleared to 0. Once the flag is cleared, new information can be shifted into INPR by 
striking another key. 
Scenario2: OUTR works similarly but the direction of information flow is reversed. Initially FGO is set 
to 1. The computer checks the flag bit; if it is 1, the information is transferred in parallel to OUTR and 
FGO is cleared to 0. The output device accepts the coded information, prints the corresponding 
character and when operation is completed, it sets FGO to 1. 
 
Input-output Instructions 
I/O instructions are needed to transferring information to and form AC register, for checking the flag 
bits and for controlling the interrupt facility. 
 

 
 
Program Interrupt 

• Input and Output interactions with electromechanical peripheral devices require huge 
processing times compared with CPU processing times 

– I/O (milliseconds) versus CPU (nano/micro-seconds) 
• Interrupts permit other CPU instructions to execute while waiting for I/O to complete 
• The I/O interface, instead of the CPU, monitors the I/O device. 
• When the interface founds that the I/O device is ready for data transfer, it generates an 

interrupt request to the CPU 
• Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches to the 

service routine to process the data transfer, and then returns to the task it was performing. 
 

Scenario3: consider a computer which completes instruction cycle in 1µs. Assume I/O device that can 
transfer information at the maximum rate of 10 characters/sec. Equivalently, one character every 
100000µs. Two instructions are executed when computer checks the flag bit and decides not to 
transfer information. Which means computer will check the flag 50000 times between each transfer. 
Computer is wasting time while checking the flag instead of doing some useful processing task. 
 
 IEN (Interrupt-enable flip-flop) 

- can be set and cleared by instructions 
- When cleared, the computer cannot be interrupted 
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Interrupt cycle 
This is a hardware implementation of a branch and save return address operation. 
 

 
 

Fig: flowchart of interrupt cycle 
 

 
Fig: Demonstration of interrupt cycle 

 
Resister transfer operations in interrupt cycle 
Register Transfer Statements for Interrupt Cycle 

- R F/F ← 1 if IEN (FGI + FGO) T0’T1’T2’ ↔ T0’T1’T2’ (IEN) (FGI + FGO): R ← 1 
 The fetch and decode phases of the instruction cycle must be modified: Replace T0, T1, T2 with 

R'T0, R'T1, R'T2 
 The interrupt cycle : RT0:  AR ← 0, TR ← PC 

 RT1: M[AR] ← TR, PC ← 0 
 RT2: PC ← PC + 1, IEN ← 0, R ← 0, SC ← 0 

 

 At the beginning of the instruction cycle, 
the instruction that is read from memory 
is in address 1. 

 At memory address 1, the programmer 
must store a branch instruction that sends 
the control to an interrupt service routine 

 The instruction that returns the control to 
the original program is "indirect BUN 0" 
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Complete computer description 
Flowchart 
This is the final flowchart of the instruction cycle including interrupt cycle for the basic computer. 

 
Microoperations  
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Design of Basic Computer (BC) 
 
Hardware Components of BC 

1. A memory unit: 4096 x 16. 
2. Registers: 

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC 
3. Flip-Flops(Status): 

I, S, E, R, IEN, FGI, and FGO 
4. Decoders:  A 3x8 Opcode decoder 

A 4x16 timing decoder 
5. Common bus: 16 bits 
6. Control logic gates 
7. Adder and Logic circuit: Connected to AC 

Control Logic Gates 
 
 
 
 
 
 
 
 
 
 
 
 
 

Outputs: 
1. Input Controls of the nine registers 
2. Read and Write Controls of memory 
3. Set, Clear, or Complement Controls 

of the flip-flops 
4. S2, S1, S0 Controls to select a register 

for the bus 
5. AC, and Adder and Logic circuit 

 

Inputs:     
   

1. Two decoder outputs 
2. I flip-flop 
3. IR(0-11) 
4. AC(0-15) 

 To check if AC = 0 
 To detect sign bit AC(15) 

5. DR(0-15) 
 To check if DR = 0 

6. Values of seven flip-flops 
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Control of resisters and memory 
The control inputs of the resisters are LD (load), INR (increment) and CLR (clear). 
 
 Address Resister (AR) 

To derive the gate structure associated with the control inputs of AR: we find all the 
statements that change the contents of AR. 

 

 
 

Fig: Control gates associated with AR 
 

Similarly, control gates for the other resisters as well as the read and write inputs of memory 
can be derived. Viz. the logic gates associated with the read inputs of memory is derived by 
scanning all statements that contain a read operation. (Read operation is recognized by the 
symbol M[AR]). 

 
The output of the logic gates that implement the Boolean expression above must be 
connected to the read input of memory. 
 

Control of flip-flops 
The control gates for the seven flip-flops can be determined in a similar manner. 
Example: 
 IEN(Interrupt Enable Flag)  

 
These three instructions can cause IEN flag to change its value. 
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Fig: control inputs for IEN 
Control of Common Bus 
The 16-bit common bus is controlled by the selection inputs S2, S1 and S0. Binary numbers for S2S1S0 is 
associated with a Boolean variable x1 through x7, which must be active in order to select the resister or 
memory for the bus. 

 
Fig: Encoder for Bus Selection Circuit 

Example: when x1 = 1, S2S1S0 must be 001 and thus output of AR will be selected for the bus. 
 
To determine the logic for each encoder input, it is necessary to find the control functions that place 
the corresponding resister onto the bus. 
Example: to find the logic that makes x1 = 1, we scan all resister transfer statements that have AR as a 
source. 

 
Therefore the Boolean function for x1 is, 

 
Similarly, for memory read operation, 
     
 

 
Fig: Encoder for bus selection inputs 
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Design of Accumulator Logic 
To design the logic associated with AC, we extract all resister transfer statements that change the 
contents of AC. The circuit associated with the AC resister is shown below:  
 

 
                  Fig: circuits associated with AC 
 

 
Control of AC Resister 
The gate structure that controls the LD, INR and CLR inputs of AC is shown below:  

 
Fig: Gate structure for controlling LD, INR and CLR of AC 
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Adder and Logic Circuit 
The adder and logic circuit can be subdivided into 16 stages, with each bit corresponding to one bit of 
AC. 

 
 

Fig: One stage of adder and logic circuit 
 
 One stage of the adder and logic circuit consists of seven AND gates, one OR gate and a full 

adder (FA) as shown above.  
 The input is labeled Ii output AC(i). 
 When LD input is enabled, the 16 inputs Ii for i = 0, 1, 2… 15 are transferred to AC(i). 
 The AND operation is achieved by ANDing AC(i) with the corresponding bit in DR(i). 
 The transfer from INPR to AC is only for bits 0 through 7.  
 The complement microoperation is obtained by inverting the bit value in AC. 
 Shift-right operation transfers bit from AC(i+1) and shift-left operation transfers the bit from 

AC(i-1). 
HEY! : The complete adder and logic circuit consists of 16 stages connected together. 

 
 
 
 
 
 
 
 

This is LD output of 
the gate structure 
which in fact is input 
for AC. (see diagram 
for gate configuration 
for AC register above) 
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EXERCISES: Textbook chapter 5   5.1, 5.2, 5.10, 5.23 
5.1(solution)  

 
 

 
5.10 (Solution) 

 
5.23 (Solution) 
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Unit 4 
Control Unit 

 
In digital computer, function of control unit is to initiate sequences of microoperations. Types 
of microoperations for particular system are finite. The complexity of digital system is 
dependent on the number of sequences of microoperations that are performed. Two 
complementary techniques used for implementing control unit: hardwired and micro 
programmed. 

Hardwired control 

When the control signals are generated by hardware using conventional logic design 
techniques, the control unit is said to be hardwired. We have already studied about the 
hardwired control unit of basic computer and timing signals associated with it, so guys, turn 
back to unit3 (textbook, chapter-5) for this portion.  

Microprogrammed control 

Basic terminologies: 

Control Memory (Control Storage: CS) 

 Storage in the microprogrammed control unit to store the microprogram. 
 
Control word 
 It is a string of control variables (0’s and 1’s) occupying a word in control memory. 

 
Microprogram 

 Program stored in control memory that generates all the control signals required to execute the 
instruction set correctly 

 Consists of microinstructions 
 

Microinstruction 

 Contains a control word and a sequencing word 
 Control Word – contains all the control information required for one clock cycle 
 Sequencing Word - Contains information needed to decide the next microinstruction address 

 
Writable Control Memory (Writable Control Storage: WCS) 

 CS whose contents can be modified: 
 Microprogram can be changed 
 Instruction set can be changed or modified   
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A computer that employs a microprogrammed control unit will have two separate memories: main 
memory and a control memory. The user’s program in main memory consists of machine instructions 
and data whereas control memory holds a fixed micro program that cannot be altered by the user. Each 
machine instruction initiates a series of microinstructions in control memory. 
 
The general configuration of a microprogrammed control unit is demonstrated in the following block 
diagram: 

 
Fig: Microprogrammed control organization 

 
Dynamic Microprogramming  

 Computer system whose control unit is implemented with a microprogram in WCS.  
 Microprogram can be changed by a systems programmer or a user 
 

Control Address Register: Control address register contains address of microinstruction. 

Control Data Register: Control data register contains microinstruction. 

Sequencer 

 The device or program that generates address of next microinstruction to be executed is 
called sequencer. 

Address Sequencing 
Each computer instruction has its own microprogram routine in control memory to generate the 
microoperations that execute the instruction. Process of finding address of next micro-instruction to be 
executed is called address sequencing. Address sequencer must have capabilities of finding address of 
next micro-instruction in following situations: 

• In-line Sequencing 
• Unconditional Branch 
• Conditional Branch  
• Subroutine call and return 
• Looping 
• Mapping from instruction op-code to address in control memory. 

 
Following is the block diagram for control memory and the associated hardware needed for selecting 
the next microinstruction address. 
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Fig: Block diagram of address sequencer. 

 Control address register receives address of next micro instruction from different sources.  
 Incrementer simply increments the address by one 
 In case of branching branch address is specified in one of the field of microinstruction. 
 In case of subroutine call return address is stored in the register SBR which is used when 

returning from called subroutine. 
 

Conditional Branch 

Simplest way of implementing branch logic hardware is to test the specified condition and branch to the 
indicated address if condition is met otherwise address resister is simply incremented. If Condition is 
true, h/w set the appropriate field of status register to 1.  Conditions are tested for O (overflow), N 
(negative), Z (zero), C (carry), etc. 

Unconditional Branch  

Fix the value of one status bit at the input of the multiplexer to 1. So that, branching can always be 
done. 
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Mapping 

Assuming operation code of 4-bits which can specify 16 (24) distinct instructions. Assume further and 
control memory has 128 words, requiring an address of 7-bits. Now we have to map 4-bit operation 
code into 7-bit control memory address. Thus, we have to map Op-code of an instruction to the address 
of the Microinstruction which is the starting microinstruction of its subroutine in memory. 

Direct mapping: 

Directly use opcode as address of Control memory 

Another approach of direct mapping: 

Transfer Opcode bits to use it as an address of control memory. 

 

Extended idea: Mapping function implemented by ROM or PLD(Programmable Logic Device)  

Use opcode as address of ROM where address of control memory is stored and than use that address as 
an address of control memory. This provides flexibility to add instructions for control memory as the 
need arises. 

 

 

 

 

ADD Routine 
AND Routine 
LDA Routine 
STA Routine 
BUN Routine 

Control 

Storage 

0000 

0001 

0010 

 

 

OP-codes of Instructions 
    ADD 

       AND 

       LDA 

       STA    

       BUN 

0000 

0001 

0010 

0011 

 

. 

. 

. 

Address 

OPCODE Mapping memory (PLD) Control Address Register Control Memory 

Fig: mapping from instruction code to 
microinstruction address 
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Subroutines 

Subroutines are programs that are used by another program to accomplish a particular task. 
Microinstructions can be saved by employing subroutines that use common sections of micro code. 

Example: the sequence of microoperations needed to generate the effective address is common to all 
memory reference instructions. Thus, this sequence could be a subroutine that is called from within 
many other routines to execute the effective address computation. 

Subroutine resister is used to save a return address during a subroutine call which is organized in LIFO 
(last in, first out) stack. 

Microprogram (An example) 

Once we have a configuration of a computer and its microprogrammed control unit, the designer 
generates the microcode for the control memory. Code generation of this type is called 
microprogramming and is similar to conventional machine language programming. We assume here a 
simple digital computer similar (but not identical) to Manos’ basic computer. 

Computer configuration 

Block diagram is shown below; it consists of two memory units: a main memory for storing instructions 
and data, and a control memory for storing the microprogram. 4 resisters are with processor unit and 2 
resisters with the control unit. 

 

Fig: Computer hardware configuration 
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Microinstruction Format 

We know the computer instruction format (explained in unit3) for different set of instruction in main 
memory. Similarly, microinstruction in control memory has 20-bit format divided into 4 functional parts 
as shown below. 

 

 

 F1, F2, F3: Microoperation fields 

 CD: Condition for branching  

 BR: Branch field 

 AD: Address field 

Each microoperation below is defined using resister transfer statements and is assigned a symbol for use 
in symbolic microprogram. 

Description of CD         Description of BR 

 

 

 

 

CD (condition) field consists of two bits representing 4 status bits and BR (branch) field (2-bits) used 
together with address field AD, to choose the address of the next microinstruction. 

Microinstruction fields (F1, F2, F3) 

 

 

 

 

 

Here, microoperations are subdivided into three fields of 3-bits each. These 3 bits are used to encode 7 
different microoperations. No more than 3 microoperations can be chosen for a microinstruction, one 
for each field. If fewer than 3 microoperations are used, one or more fields will contain 000 for no 
operation. 

F1 F2 F3 CD BR AD 
3 3 3 2 2 7 
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Symbolic Microinstructions 

Symbols are used in microinstructions as in assembly language. A symbolic microprogram can be 
translated into its binary equivalent by a microprogram assembler. 

Format of Microinstruction: 

Contains five fields:  label; micro-ops; CD; BR; AD 

Label: may be empty or may specify a symbolic address terminated with a colon  

Micro-ops: consists of one, two, or three symbols separated by commas 

CD:  one of {U, I, S, Z},  

Where  U:   Unconditional Branch 

                              I:    Indirect address bit 

                             S:    Sign of AC 

                             Z:   Zero value in AC  

BR:  one of {JMP, CALL, RET, MAP}  

AD:  one of {Symbolic address, NEXT, empty (in case of MAP and RET)} 

Symbolic Microprogram (example) 

FETCH Routine: During FETCH Read an instruction from memory and decode the instruction and update 
PC 

Sequence of microoperations in the fetch cycle: 

 

 

 

Symbolic microprogram for the fetch cycle: 

    

 

 

 

 

ORG 64 

FETCH:  PCTAR                U    JMP     NEXT   

  READ, INCPC    U    JMP     NEXT   

  DRTAR               U    MAP               

 

AR ←   PC 

DR ←  M[AR], PC ← PC + 1 

AR ← DR(0-10), CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0 
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• Control Storage: 128  20-bit words 

•  The first 64 words:  Routines for the 16 machine instructions 

•  The last 64 words:   Used for other purpose (e.g., fetch routine and other subroutines) 

•  Mapping:                  OP-code XXXX into 0XXXX00, the first address for the 16 routines are 

                                      0(0 0000 00), 4(0 0001 00),  8, 12, 16, 20, ..., 60 

Partial Symbolic Microprogram 

 

 

Binary Microprogram 

Symbolic microprogram is a convenient form for writing microprograms in a way that people can 
understand. But this is not a way that the microprogram is stored in memory. It must be translated into 
binary by means of assembler. 

Binary equivalent of a microprogram translated by an assembler for fetch cycle: 

 

E.g. the execution of ADD 
instruction is carried out by 
the microinstructions at 
addresses 1 and 2. The first 
microinstruction reads 
operand from into DR. The 
second microinstruction 
performs an add 
microoperation with the 
content of DR AC and then 
jumps back to the beginning 
of the fetch routine. 
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Binary address             F1           F2           F3            CD              BR                 AD 

1000000             110         000         000           00             00                 1000001 

1000001            000         100         101           00             00        1000010 

1000010             101         000         000           00             11         0000000 

 

Binary program for control memory 

 

 

Design of Control Unit 

F-field decoding 

The 9-bits of the microoperation field are divided into 3 subfields of 3 bits each. The control memory 
output of each subfield must be decoded to provide distinct microoperations. The outputs of the 
decoders are connected to the appropriate inputs in the processor unit. 

Fig below shows 3 decoders and connections that must be made from their outputs.  
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Fig: Decoding of microoperation fields 

 

Microprogram Sequencer 

Basic components of a microprogrammed control unit are control memory and the circuits that 
select the next address. This address selection part is called a microprogram sequencer. The 
purpose of microprogram sequencer is to load CAR so that microinstruction may be read and 
executed. Commercial sequencers include within the unit an internal resister stack to store 
addresses during microprogram looping and subroutine calls. 

Internal structure of a typical microprogram sequencer is shown below in the diagram. It 
consists of input logic circuit having following truth table. 

 

Fig: Input Logic Truth for Microprogram Sequencer 

E.g. when F1=101 (binary 5), next 
clock pulse transition transfers 
the content of DR(0-10) to AR 
(DRTAR). Similarly when 
F1=110(6), there is a transfer 
from PC to AR (PCTAR). Outputs 5 
& 6 of decoder F1 are connected 
to the load inputs of AR so that 
when either is active information 
from multiplexers is transferred 
to AR. 

Arithmetic logic shift unit instead 
of using gates to generate control 
signals, is provided inputs with 
outputs of decoders (AND, ADD 
and ARTAC). 
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Fig: Microprogram sequencer for a control memory 

-MUX1 selects an address from one 
of four sources of and routes it into 
CAR. 

-MUX2 tests the value of selected 
status bit and result is applied to 
input logic circuit. 

-Output of CAR provides address for 
the control memory 

-Input logic circuit has 3 inputs I0, I1 
and T and 3 outputs S0, S1 and L. 
variables S0 and S1 select one of the 
source addresses for CAR. L enables 
load input of SBR. 

-e.g. when S1S0=10, MUX input 
number 2 is selected and establishes 
a transfer path from SBR to CAR. 
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Unit 5 
Central Processing Unit (CPU) 

 
 
 

Introduction 
Part of the computer that performs the bulk of data-processing operations is called the central 
processing unit (CPU). It consists of 3 major parts: 

 
Fig: Major components of CPU 

 
Here, we will proceed from programmer’s point of view (as we know CA is the study of computer 
structure and behavior as seen by the programmer) which includes the instruction formats, addressing 
modes, instruction set and general organization of CPU registers. 
 
General Register Organization 
A bus organization of seven CPU registers is shown below: 

 
(a) Block diagram (register organization)     

Why we need CPU registers? 
 During instruction execution, we 

could store pointers, counters, 
return addresses, temporary results 
and partial products in some 
locations in RAM, but having to refer 
memory locations for such 
applications is time consuming 
compared to instruction cycle. So for 
convenient and more efficient 
processing, we need processor 
registers (connected through 
common bus system) to store 
intermediate results. 

 

• Register set: stores intermediate data during 
execution of an instruction 

• ALU: performs various microoperations required 
• Control unit: supervises register transfers  and 

instructs ALU 
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All registers are connected to two multiplexers (MUX) that select the registers for bus A and bus B. 
Registers selected by multiplexers are sent to ALU. Another selector (OPR) connected to ALU selects the 
operation for the ALU. Output produced by ALU is stored in some register and this destination register 
for storing the result is activated by the destination decoder (SELD). 
 
Example:  R1 ← R2 + R3 

– MUX selector (SELA):  BUS A ← R2 
– MUX selector (SELB):  BUS B ← R3 
– ALU operation selector (OPR): ALU to ADD 
– Decoder destination selector (SELD): R1 ← Out Bus 

 
Control word 
Combination of all selection bits of a processing unit is called control word. Control Word for above CPU 
is as below: 

 
The 14 bit control word when applied to the selection inputs specify a particular microoperation. 
Encoding of the register selection fields and ALU operations is given below: 
 

 
 
 
 
 
 
 
 
 
 
Example: R1 ← R2 - R3 
This microoperation specifies R2 for A input of the ALU, R3 for the B input of the ALU, R1 for the 
destination register and ALU operation to subtract A-B. Binary control word for this microoperation 
statement is: 

 
Examples of different microoperations are shown below: 
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Stack Organization 
This is useful last-in, first-out (LIFO) list (actually storage device) included in most CPU’s. Stack in digital 
computers is essentially a memory unit with a stack pointer (SP). SP is simply an address register that 
points stack top. Two operations of a stack are the insertion (push) and deletion (pop) of items. In a 
computer stack, nothing is pushed or popped; these operations are simulated by incrementing or 
decrementing the SP register. 
 
Register stack 
It is the collection of finite number of registers. Stack pointer (SP) points to the register that is currently 
at the top of stack. 

  
 

Fig: Block diagram of a 64-word stack 
 
Memory stack 
A portion of memory can be used as a stack with a processor register as a SP. Figure below shows a 
portion of memory partitioned into 3 parts: program, data and stack.  

 

Diagram shows 64-word register stack. 6-bit address SP points stack 
top. Currently 3 items are placed in the stack: A, B and C do that 
content of SP is now 3 (actually 000011). 1-bit registers FULL and EMTY 
are set to 1 when the stack is full and empty respectively. DR is data 
register that holds the binary data to be written into or read out of the 
stack. 
 
 
/* Initially, SP = 0, EMPTY = 1(true), FULL = 0(false) */ 
Push operation           Pop operation 
SP ← SP + 1                     DR ← M [SP] 
M [SP] ← DR                     SP ← SP − 1 
If (SP = 0) then (FULL ← 1)  If (SP = 0) then (EMPTY ← 1) 
EMPTY ← 0                      FULL ← 0 
 
 

 
PC: used during fetch phase to read an instruction.  
AR: used during execute phase to read an operand.  
SP: used to push or pop items into or from the stack. 
 
Here, initial value of SP is 4001 and stack grows with 
decreasing addresses. First item is stored at 4000, 
second at 3999 and last address that can be used is 
3000. No provisions are available for stack limit checks. 
 
 
PUSH:   POP: 
SP ← SP - 1    DR ← M[SP] 
M[SP] ← DR   SP ← SP + 1 
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Processor Organization  
In general, most processors are organized in one of 3 ways: 
 
1. Single register (Accumulator) organization 

 Basic Computer is a good example 
 Accumulator is the only general purpose register 
 Uses implied accumulator register for all operations 

 
2. General register organization 

 Used by most modern processors 
 Any of the registers can be used as the  

source or destination for computer  
operations. 

 
3. Stack organization 

 All operations are done with the stack 
 For example, an OR instruction will pop  

the two top elements from the stack,  
do a logical OR on them, and push the  
result on the stack. 

 
Types of instruction 
 
Instruction format of a computer instruction usually contains 3 fields: operation code field (opcode), 
address field and mode field. The number of address fields in the instruction format depends on the 
internal organization of CPU. On the basis of no. of address field we can categorize the instruction as 
below: 
 
• Three-Address Instructions 

Computers with three-address instruction formats can use each address field to specify either a 
processor register or a memory operand.  
 
Assembly language program to evaluate X = (A + B) * (C + D): 
 
  ADD R1, A, B     // R1 ← M [A] + M [B]    
          ADD R2, C, D     // R2 ← M[C] + M [D]              
  MUL X, R1, R2 // M[X] ← R1 * R2  
 

 Results in short programs  
 Instruction becomes long (many bits) 

 
• Two-Address Instructions 

These instructions are most common in commercial computers. 
 
Program to evaluate X = (A + B) * (C + D): 
 
 

Example: 
ADD X              // AC ← AC + M[X] 
LDA Y                // AC ← M[Y]  
 

Example: 
ADD R1, R2, R3         // R1 ← R2 + R3     
ADD R1, R2                // R1 ← R1 + R2    
MOV R1, R2               // R1 ← R2     
ADD R1, X                  // R1 ← R1 + M[X]   
 

Example: 
PUSH X                // TOS ← M[X]     
ADD                     // TOS = TOP(S) + TOP(S)   
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  MOV    R1, A                // R1 ← M [A]            
  ADD     R1, B               // R1 ← R1 + M [A]   
  MOV    R2, C              // R2 ← M[C]            
  ADD     R2, D              // R2 ← R2 + M [D]   
  MUL     R1, R2            // R1 ← R1 * R2       
  MOV     X, R1            // M[X] ← R1            
 

 Tries to minimize the size of instruction 
 Size of program is relatively larger. 

 
• One-Address Instructions 

One-address instruction uses an implied accumulator (AC) register for all data manipulation. All 
operations are done between AC and memory operand. 
 
Program to evaluate X = (A + B) * (C + D): 
 
  LOAD     A            // AC ← M [A]      
  ADD       B            // AC ← AC + M [B]   
  STORE   T            // M [T] ← AC      
  LOAD     C            // AC ← M[C]      
  ADD       D            // AC ← AC + M [D]  
  MUL       T            // AC ← AC * M [T]  
  STORE   X           // M[X] ← AC      
 

 Memory access is only limited to load and store 
 Large program size 

 
• Zero-Address Instructions 

A stack-organized computer uses this type of instructions. 
  
Program to evaluate X = (A + B) * (C + D): 
 
 PUSH A // TOS ← A    
 PUSH B // TOS ← B      
 ADD  // TOS ← (A + B)     
 PUSH C // TOS ← C      
 PUSH D // TOS ← D      
 ADD  // TOS ← (C + D)   
 MUL  // TOS ← (C + D) * (A + B)   

                               POP X                // M[X] ← TOS 
 
The name “zero-address” is given to this type of computer because of the absence of an address 
field in the computational instructions. 
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Addressing Modes 
I am repeating it again guys:”Operation field of an instruction specifies the operation that must be 
executed on some data stored in computer register or memory words”. The way operands (data) are 
chosen during program execution depends on the addressing mode of the instruction. So, addressing 
mode specifies a rule for interpreting or modifying the address field of the instruction before the 
operand is actually referenced. 
We use variety of addressing modes to accommodate one or both of following provisions: 
 To give programming versatility to the user (by providing facilities as: pointers to memory, 

counters for loop control, indexing of data and program relocation) 
 To use the bits in the address field of the instruction efficiently  

 
Types of addressing modes 
 
 Implied Mode 

Address of the operands is specified implicitly in the definition of the instruction. 
        - No need to specify address in the instruction 
        - Examples from Basic Computer CLA, CME, INP 
        ADD X; 
        PUSH Y; 
 Immediate Mode 

Instead of specifying the address of the operand, operand itself is specified in the instruction. 
          - No need to specify address in the instruction 
          - However, operand itself needs to be specified 
          - Sometimes, require more bits than the address 
          - Fast to acquire an operand 
 Register Mode 

Address specified in the instruction is the address of a register 
          - Designated operand need to be in a register 
          - Shorter address than the memory address 
          - A k-bit address field can specify one of 2k registers. 
          - Faster to acquire an operand than the memory addressing              
 Register Indirect Mode 
      Instruction specifies a register which contains the memory address of the operand. 

- Saving instruction bits since register address is shorter than the memory address 
- Slower to acquire an operand than both the register addressing or memory addressing       
- EA (effective address) = content of R.                       

  Autoincrement or Autodecrement Mode 
It is similar to register indirect mode except that the register is incremented or decremented after 
(or before) its value is used to access memory. When address stored in the register refers to a table 
of data in memory, it is necessary to increment or decrement the register after every access to the 
table. 

 Direct Addressing Mode 
      Instruction specifies the memory address which can be used directly to access the memory 

- Faster than the other memory addressing modes 
- Too many bits are needed to specify the address for a large physical memory Space 
- EA= IR(address) 
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  Indirect Addressing Mode 
- The address field of an instruction specifies the address of a memory location that        

contains the address of the operand 
- When the abbreviated address is used large physical memory can be addressed with a 

relatively small number of bits 
- Slow to acquire an operand because of an additional memory access 
- EA= M[IR (address)] 

 
 Relative Addressing Modes 

The Address field of an instruction specifies the part of the address which can be used along with a 
designated register (e.g. PC) to calculate the address of the operand. 

             - Address field of the instruction is short 
             - Large physical memory can be accessed with a small number of address bits       
 3 different Relative Addressing Modes:           
* PC Relative Addressing Mode: 
                     - EA = PC + IR(address) 
* Indexed Addressing Mode  
                     - EA = IX + IR(address) { IX is index register } 
* Base Register Addressing Mode 
                     - EA = BAR + IR(address) 
 
 
Numerical Example (Addressing modes) 
 
 

 
Fig: numerical example of addressing modes 
 

We have 2-word instruction “load to AC” 
occupying addresses 200 and 201. First word 
specifies an operation code and mode and second 
part specifies an address part (500 here).  
Mode field specify any one of a number of 
modes. For each possible mode we calculate 
effective address (EA) and operand that must be 
loaded into AC. 
Direct addressing mode: EA = address field 
500 and AC contains 800 at that time. 
Immediate mode: Address part is taken as the 
operand itself. So AC = 500. (Obviously EA = 201 
in this case) 
Indirect mode: EA is stored at memory address 
500. So EA=800. And operand in AC is 300. 
Relative mode: 

 PC relative: EA = PC + 500=702 and 
operand is 325. (since after fetch phase 
PC is incremented) 

 Indexed addressing: EA=XR+500=600 
and operand is 900. 

Register mode: Operand is in R1, AC = 400 
Register indirect mode: EA = 400, so AC=700 
Autoincrement mode: same as register indirect 
except R1 is incremented to 401 after execution of 
the instruction. 
 Autodecrement mode: decrements R1 to 399, 
so AC is now 450. 
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Following listing shows the vale of effective address and operand loaded into AC for 9 addressing 
modes. 

Direct address EA = 500  // AC ← M[500]   
  AC content = 800 
Immediate operand  EA = 201  // AC ← 500   
  AC content = 500 
Indirect address EA = 500  // AC ← M[M[500]]  
  AC content = 300 
Relative address EA = 500  // AC ← M[PC+500]   
  AC content = 325 
Indexed address EA = 500  // AC ← (IX+500)   
  AC content = 900 
Register            EA = 500       // AC ← R1   
  AC content = 400 
Register indirect EA = 400           // AC ← M[R1]   
  AC content = 700 
Autoincrement EA = 500   // AC ← (R1)   
  AC content = 700 
Autodecrement      EA = 399                     //AC ← -(R) 
                                     AC content = 450 
 
 

Data Transfer and Manipulation 
 
Computers give extensive set of instructions to give the user the flexibility to carryout various 
computational tasks. The actual operations in the instruction set are not very different from one 
computer to another although binary encodings and symbol name (operation) may vary. So, most 
computer instructions can be classified into 3 categories: 

1. Data transfer instructions 
2. Data manipulation instructions 
3. Program control instructions 

 
Data transfer Instructions 
Data transfer instructions causes transfer of data from one location to another without 
modifying the binary information content. The most common transfers are: 

• between memory and processor registers 
• between processor registers and I/O 
• between processor register themselves 

Table below lists 8 data transfer instructions used in many computers. 
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HEY!, different computer use different mnemonics for the same instruction name. 
 
Instructions described above are often associated with the variety of addressing modes. 
Assembly language uses special character to designate the addressing mode. E.g. # sign placed 
before the operand to recognize the immediate mode. (Some other assembly languages modify 
the mnemonics symbol to denote various addressing modes, e.g. for load immediate: LDI). 
Example: consider load to accumulator instruction when used with 8 different addressing 
modes: 

 
 
Data manipulation Instructions 
Data manipulation instructions provide computational capabilities for the computer. These are 
divided into 3 parts: 
4. Arithmetic instructions 
5. Logical and bit manipulation instructions  
6. Shift instructions 
These instructions are similar to the microoperations in unit3. But actually; each instruction 
when executed must go through the fetch phase to read its binary code value from memory. 
The operands must also be brought into registers according to the rules of different addressing 
mode. And the last step of executing instruction is implemented by means of microoperations 
listed in unit 3. 
 
Arithmetic instructions 
Typical arithmetic instructions are listed below: 

Load: denotes transfer from memory to registers (usually AC) 
Store: denotes transfer from a processor registers into memory 
Move: denotes transfer between registers, between memory 
words or memory & registers. 
Exchange: swaps information between two registers or register 
and a memory word. 
Input & Output: transfer data among registers and I/O terminals. 
Push & Pop: transfer data among registers and memory stack. 

Table: Recommended assembly 
language conventions for load 
instruction in different 
addressing modes 
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Logical and bit manipulation instructions 
Logical instructions perform binary operations on strings of bits stored in registers and are useful for 
manipulating individual or group of bits representing binary coded information. Logical instructions each 
bit of the operand separately and treat it as a Boolean variable. 
 

 
 
Shift instructions 
Instructions to shift the content of an operand are quite useful and are often provided in several 
variations (bit shifted at the end of word determine the variation of shift). Shift instructions may specify 
3 different shifts: 

• Logical shifts 
• Arithmetic shifts 
• Rotate-type operations 

 

 
 
 

• Clear instr. causes specified operand to be 
replaced by 0’s. 

• Complement instr. produces the 1’s 
complement. 

• AND, OR and XOR instructions produce 
the corresponding logical operations on 
individual bits of the operands. 

• Increment (decrement) instr. adds 1 to 
(subtracts 1 from) the register or memory 
word value. 

• Add, subtract, multiply and divide 
instructions may operate on different 
data types (fixed-point or floating-point, 
binary or decimal). 

 
 

• Table lists 4 types of shift instructions. 
• Logical shift inserts 0 at the end position 
• Arithmetic shift left inserts 0 at the end 

(identical to logical left shift) and arithmetic 
shift right leave the sign bit unchanged 
(should preserve the sign). 

• Rotate instructions produce a circular shift. 
• Rotate left through carry instruction 

transfers carry bit to right and so is for 
rotate shift right. 
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Program control instructions 
Instructions are always stored in successive memory locations and are executed accordingly. But 
sometimes it is necessary to condition the data processing instructions which change the PC value 
accidently causing a break in the instruction execution and branching to different program segments.  
 
  Name                                     Mnemonic   

 
 
 
 
RISC and CISC 
An important aspect of computer architecture is the design of the instruction set for the processor. Early 
computers had small and simple instruction sets, forced mainly by the need to minimize the hardware 
used to implement them. As digital hardware became cheaper with the advent of ICs, computer 
instructions tended to increase both in number and complexity. Many computers have instruction sets 
that include 100-200 instructions employing variety of data types and large number of addressing 
modes and are classified as Complex Instruction Set Computer (CISC). In early 1980s, a number of 
computer designers recommended that computers use fewer instructions with simple constructs so as 
to execute them faster with in CPU without using memory as often. This type of computer is classified as 
a Reduced Instruction Set Computer (RISC). 
 
CISC  
One reason to provide a complex instruction set is the desire to simplify the compilation (done by 
compilers to convert high level constructs to machine instructions) and improve the overall computer 
performance. 
Essential goal: Provide a single machine instruction for each statement in high level language. 
Examples: Digital Equipment Corporation VAX computer and IBM 370 computer. 
 
Characteristics: 

1. A large no of instructions - typically from 100 to 250 instructions. 
2. A large variety of addressing modes – typically form 5 to 20. 
3. Variable-length instruction formats 
4. Instructions that manipulate operands in memory 

 
RISC 
Main Concept: Attempt to reduce execution time by simplifying the instruction set of the computer. 
 
Characteristics: 

1. Relatively few instructions and addressing modes. 
2. Memory access limited to load and store instructions 
3. All operations done with in CPU registers (relatively large no of registers) 
4. Fixed-length, easily decoded instruction format 

• Branch (usually one address instruction) and 
jump instructions can be changed 
interchangeably. 

• Skip is zero address instruction and may be 
conditional & unconditional. 

• Call and return instructions are used in 
conjunction with subroutine calls. 
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5. Single cycle instruction execution 
6. Hardwired rather than Microprogrammed control 
7. Use of overlapped-register windows to speed procedure call and return 
8. Efficient instruction pipeline 

 
Overlapped Resister Windows 
Procedure call and return occurs quite often in high-level programming languages. When translated into 
machine language, procedure call produces a sequence of instructions that save register values, pass 
parameters needed for the procedure and then calls a subroutine to execute the body of the 
procedure. After a procedure return, the program restores the old register values, passes results to the 
calling program and returns from the subroutine. Saving & restoring registers and passing of parameters 
& results involve time consuming operations.  
A characteristic of some RISC processors is use of overlapped register windows to provide the passing of 
parameters and avoid need for saving & restoring register values. The concept of overlapped register 
windows is illustrated below: 
 

  
 Fig: Overlapped Resister Windows 

 System has a total of 74 registers (Just an example) 
 R0 – R9 = global registers (hold parameters shared by all 

procedures) 
 Other 64 registers are divided into 4 windows to 

accommodate procedures A, B, C and D. 
 Each register window consists of 10 local registers and two 

sets of 6 registers common to adjacent windows. 
 Common overlapped registers permit parameters to be 

passed without the actual movement of data 
 Only one register window is activated at any time with a 

pointer indicating the active window. 
 Four windows have a circular organization with A being 

adjacent to D. 

Example: Procedure A calls B 
 Registers R26 to R31 are common 

to both procedures and therefore 
procedure A stores the 
parameters for procedure B in 
these registers. 

 B uses local registers R32 through 
R41 for local variable storage. 

 When B is ready to return at the 
end of its computation, programs 
stores results in registers R26-R31 
and transfers back to the register 
window of procedure A. 
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In general, the organization of register windows will have following relationships: 
• Number of global registers = G 
• Number of local register in each window = L 
• Number of registers common to windows = C 
• Number of windows = W 

Now, 
 Window size = L + 2C +G 
 Register file = (L+C)W + G (total number of register needed in the processor) 

 
Example: In above fig, G = 10, L = 10, C = 6 and W = 4. Thus window size = 10+12+10 = 32 registers and 
register file consists of (10+6)*4+10 = 74 registers. 
 
 
 
 
Exercises: textbook chapter 8  8.12 (do it yourself) 
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Unit 6 
Fixed point Computer Arithmetic 

 
Arithmetic instructions manipulate data to produce solution for computational problems. The 4 basic 
arithmetic operations are addition, subtraction, multiplication and division. From these 4, it is possible 
to formulate other scientific problems by means of numerical analysis methods. Here, we’ll discuss 
these 4 operations only on fixed-point binary data (there are other types too, viz. floating point binary 
data, binary-coded decimal data) and hence the unit named. 
 
Addition and Subtraction 
There are 3 ways of representing negative fixe-point binary numbers: signed magnitude, signed 1’s 
complement or signed 2’s complement. Singed 2’s complemented form used most but occasionally we 
deal with signed magnitude representation. 
 
Addition and Subtraction with signed-magnitude data 
Everyday arithmetic calculations with paper and pencil for signed binary numbers are straight forward 
and are helpful on deriving hardware algorithm. When two signed numbers A and B are added are 
added are subtracted, we find 8 different conditions to consider as described in following table: 

 
 
Table: addition and subtraction of signed-magnitude numbers 
 
Hardware Implementation 
To implement the two arithmetic operations with hardware, we have to store numbers into two register 
A and B. let As and Bs be two flip-flops that holds corresponding signs. The result is transferred to A and 
As. A and As together form a accumulator. 
 

 
Fig: hardware for signed-magnitude addition and subtraction 

Note: Brackets () for subtraction 

Addition (subtraction) algorithm: 
when the signs of A and B are 
identical (different), add 
magnitudes and attach the sign of 
A to result. When the signs of A 
and b are different (identical), 
compare the magnitudes and 
subtract the smaller form larger. 

       

 

We need: 
 Consists of two resisters A and B 

and sign flip-flops As and Bs. 
 A magnitude comparator: to 

check if A>B, A<B or A=B. 
 A parallel adder: to perform A+B 
 Two parallel subtractors: for A-B 

and B-A 
 The sign relationships are 

determined from an exclusive-
OR gate with As and Bs as inputs. 
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Block Diagram Description: hardware above consists of registers A and B and sign flip-flops As and Bs. 
subtraction is done by adding A to the 2’s complement of B. Output carry is transferred to flip-flop E, 
where it can be checked to determine the relative magnitude of two numbers. Add-overflow flip-flop 
AVF holds overflow bit when A and B are added. Addition of A and B is done through the parallel adder. 
The S output of adder is applied to A again. The complementer provides an output of B or B’ depending 
on mode input M. Recalling unit 2, when M = 0, the output of B is transferred to the adder, the input 
carry is 0 and thus output of adder is A+B. when M=1, 1’s complement of B is applied to the adder, input 
carry is 1 and output is S = A+B’+1 (i.e. A-B). 
 
Hardware Algorithm 
The flowchart for the H/W algorithm is given below:  
 

 
 
Fig: flowchart for add and subtract operations 
 
 
Addition and Subtraction with signed 2’s complement data 
Guys, refer unit 1 once, addition and subtraction with signed 2’s complement data are introduced there. 
Anyway, in signed 2’s complement representation, the leftmost bit represents sign (0-positive and 1-
negative). If sign bit is 1, entire number is represented in 2’s complement form (+33=00100001 and -
33=2’s complement of 00100001 =11011111). 
Addition: sign bits treated as other bits of the number. Carry out of the sign bit is discarded. 
Subtraction: consists of first taking 2’s complement of the subtrahend and then adding it to minuend. 
When two numbers of n-digits each are added and the sum occupies n+1 bits, overflow occurs which is 
detected by applying last two carries out of the addition to XOR gate. The overflow occurs when output 
of the gate is 1. 

As and Bs are compared by an exclusive-OR 
gate. If output = 0, signs are identical, if 1 signs are 
different.  

For add operation identical signs dictate 
addition of magnitudes and for subtraction, 
different magnitudes dictate magnitudes be 
added. Magnitudes are added with a 
microoperation EAA+B (EA is a resister that 
combines A and E). if E = 1, overflow occurs and is 
transferred to AVF. 

Two magnitudes are subtracted if signs are 
different for add operation and identical for 
subtract operation. Magnitudes are subtracted 
with a microoperation EAA+B’+1. No overflow 
occurs if the numbers are subtracted so AVF is 
cleared to 0. E=1 indicates A>=B and number (this 
number is checked again for 0 to make positive 0 
[As=0]) in A is correct result. E=0 indicates A<B, so 
we take 2’s complement of A. 
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Fig: hardware for signed-2’s complement 
addition and subtraction 
 
 

 
Fig: algorithm for addition & subtraction of  
        numbers in signed-2’s complement representation 
 
 
Multiplication 
 
Signed-magnitude representation 
For this representation, multiplication is done by a process of successive shift and adds operations. As an 
example: 
 

 
 
 
 
 

Register configuration is same as signed-
magnitude representation except sign bits are not 
separated. The leftmost bits in AC and BR represent 
sign bits.  

Significant difference: sign bits are added are 
subtracted together with the other bits in 
complementer and parallel adder. The overflow flip-
flop V is set to 1 if there is an overflow. Output carry 
in this case is discarded. 

 
Example:  33 + (-35) 
AC = 33 = 00100001 
BR = -35 = 2’s complement of 35 = 11011101 
AC + BR = 11111110 = -2 which is the result 
 
Comparing this algorithm with its signed-
magnitude counterpart, it is much easier to 
add and subtract numbers. For this reason 
most computers adopt this representation 
over the more familiar signed-magnitude. 
 

Process consists of looking successive bits of the 
multiplier, least significant bits first. If the multiplier bit 
is 1, the multiplicand is copied down; otherwise, zeros 
are copied down. Numbers copied down in successive 
lines are shifted one position Shifted left one position. 
Finally, numbers are added to form a product. 
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Hardware implementation for signed-magnitude data 
It needs same hardware as that of addition and subtraction of signed-magnitude. In addition it needs 
two more registers Q and SC. 
 

 
 

Fig: Hardware for multiply operation 
 
Hardware Algorithm 
Flowchart below shows a hardware multiply algorithm.  
 

 
 
 
 
 

 Successively accumulate partial 
products and shift it right. 

 Q  multiplier and Qs   sign. 
 SC  no. of bits in multiplier 

(magnitude only). 
 SC is decremented after forming 

each partial product. When SC is 0, 
process halts and final product is 
formed. 

 B  multiplicand, Bs  sign 
 Sum of A and B forms a partial 

product 

Example:  B = 10111 (Multiplicand)    
Q = 10011 (Multiplier) 

Operation E A Q SC 
Initial conf. 0 00000 10011 101 

Iteration 1 (Qn = 1) 
EA A+B 

PP1--> 
shr EAQ, SCSC-1 

 
 

0 

00000 
+ 10111 

10111 
  

0 01011 11001 100 
Iteration 2 (Qn = 1) 

EA A+B 
PP2--> 

shr EAQ, SCSC-1 

 
 

1 

01011 
+ 10111 

00010 

 
 

11001 

 
 
 

0 10001 01100 011 
Iteration 3 (Qn = 0) 
shr EAQ, SCSC-1 0 01000 10110 010 
Iteration 4 (Qn = 0) 
shr EAQ, SCSC-1 0 00100 01011 001 
Iteration 5 (Qn = 1) 

EA A+B 
PP3--> 

shr EAQ, SCSC-1 

 
 

0 

00100 
+ 10111 

11011 

 
 

01011 

 
 
 

0 01101 10101 000 
Final Product in AQ 0110110101 
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Signed 2’s complement representation 
 
Booth multiplication Algorithm 
Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement notation. 
 
Inspiration: String of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1-2m. As an 
example, binary number 001110 (+14) has string of 1’s from 23 to 21 (k=3, m=1). So, this number can be 
represented as 2k+1 - 2m = 24 - 21 = 16 – 2 = 14 (case is similar for -14 (110010) = -24+22-21). Thus, M * 14 = 
M * 24 – M * 21; product can be obtained by shifting multiplicand M four times left and subtracted M 
shifted left once.  
As in other multiplication schemes, Booth algorithm also requires examination of multiplier bits and 
shifting of the partial product. Prior to shifting multiplicand may be: 
Subtracted <-- upon the encountering first least significant 1 in the string of 1’s in the multiplier. 
Added <-- upon encountering first 0 (left of it must be 1) in string of 0’s in the multiplier. 
Unchanged <-- when multiplier bit (Qn) is identical to previous multiplier bit (Qn+1) 
 
Hardware for Booth algorithm 
 

 
 
Hardware Booth algorithm 

 

 Here, sign bits are not separated. 
 Registers A, B and Q are renamed to AC, BR and QR. 
 Extra flip-flop Qn+1 appended to QR is needed to store 

almost lost right shifted bit of the multiplier (which 
along with current Qn gives information about bit 
sequencing of multiplier, in fact no. of 1’s gathered 
together). 

 Pair QnQn+1 inspect double bits of the multiplier. 

Numerical Example: Booth algorithm 
BR = 10111 (Multiplicand)    
QR = 10011 (Multiplier) 
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Array Multiplier 
Checking the bits of the multiplier one at a time and forming partial products is a sequential operation 
requiring sequence of add and shift microoperations. The multiplication of two binary numbers can be 
done with one microoperation by using combinational circuit that forms product bits all at once. This is a 
fast way of multiplying two numbers since all it takes is the time to propagate through the gates that 
form the multiplication array.  
Consider multiplication of two 2-bit numbers: Multiplicand = b1b0, Multiplier = a1a0, Product = c3c2c1c0 

 
Fig: 2-bit by 2-bit array multiplier 

 
A combinational circuit binary multiplier with more bits can be constructed in similar fashion. For j 
multiplier bits and k multiplicand bits, we need j*k AND gates and (j-1) k-bit adders to produce a product 
of j+k bits. 

 
Fig: 4-bit by 3-bit array multiplier 

• Since multiplication of 
two bits is identical to 
AND operation and hence 
can be implemented with 
AND gate. 

• In the diagram, partial 
products and formed and 
added by means of HA 
(half adders). 
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Division Algorithms 
Division of fixed-point binary numbers in signed-magnitude representation is done with successive 
compare, shift and subtract operations. 
 
Example:  
 

 
 
 
Hardware Implementation for Signed-Magnitude Data 
While implementing division in digital system, we adopt slightly different approach. Instead of shifting 
divisor right, the partial remainder (or dividend) is shifted left. Hardware is similar to multiplication 
algorithm (not booth). Register EAQ is now shifted left with 0 inserted into Qn (Obviously, previous value 
of E is lost). (I am not redrawing the diagram guys, it’s all same as multiplication but EAQ is shifted left so 
change the direction of arrows at bottom). 
 
Divide Overflow 
 Division operation may result in a quotient with an overflow when working with finite size registers. 
  Storing divisor in n-bit resister and dividend in 2 n-bit registers, then if quotient occupies n+1 bits, 

we say divide-overflow has occurred (since n+1 bit quotient can not be stored in standard n-bit Q-
register and/or memory word). 

 Talking about special case: size (dividend) = 2 * size (divisor). Divide-overflow condition will occur if 
high-order half bits of the dividend >= divisor. This condition is detected by DVF (Divide-overflow 
Flip-flop). 
 

Handling of overflow: its programmer’s responsibility to detect DVF and take corrective measure. The 
best way is to use floating point data. 
 
Hardware algorithm (Restoring algorithm) 
Flowchart for hardware algorithm is shown below: 

• Easier than decimal since 
quotient digits are 0 or 1. 

• B  divisor, A  dividend, 
Q Quotient 

• Process consists of 
comparing a partial 
remainder with a divisor. 
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Fig: flow chart for divide operation 
 

Numerical Example:  Binary division with digital hardware 

 

!!!HEY: In each iteration, just after left -
shifting EAQ, we test it for 0 or 1 and proceed 
accordingly which is not noted in example 
(Example is taken such that E is always 0 just 
after shifting).  

 B: Divisor, AQ: Dividend  
 If A>=B (oh yes, magnitudes are compared 

subtracting one from another and testing E flip-
flop), DVF is set and operation is terminated 
prematurely. If A<B, no overflow and dividend 
is restored by adding B to A (since B was 
subtracted previously to compare magnitudes). 

 Division starts by left shifting AQ (dividend) 
with high order bit shifted to E. Then E=1, EA>B 
so B is subtracted from EA and Qn is set to 1. If 
E=0, result of subtraction is stored in EA, again 
E is tested. E=1 signifies A>=B, thus Qn is set to 
1 and E=0 denotes A<B, so original number is 
restored by adding B to A and we leave 0 in Qn. 

 Process is repeated again with register A 
holding partial remainder. After n-1 times Q 
contains magnitude of Quotient and A contains 
remainder. Quotient sign in Qs and remainder 
sign in As. 

This is the restoring step. Different variant of 
division algorithm only have distinction at this 
step.  

HEY! You may face Nonrestoring or comparison 
methods as long questions. Don’t blame me for 
that since everything (hardware implementation 
and hardware algorithm) is same. Only difference 
is at this step. 
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Other division algorithms 
Method described above is restoring method in which partial remainder is restored by adding the 
divisor to the negative result. Other methods: 
 
Comparison method:  A and B are compared prior to subtraction. Then if A>=B, B is subtracted form A. if 
A<B nothing is done. The partial remainder is then shifted left and numbers are compared again. 
Comparison inspects end-carry out of the parallel adder before transferring to E. 
 
Nonrestoring method: In contrast to restoring method, when A-B is negative, B is not added to restore 
A but instead, negative difference is shifted left and then B is added. How is it possible? Let’s argue:  
 In flowchart for restoring method, when A<B, we restore A by operation A-B+B. Next tine in a loop, 

this number is shifted left (multiplied by 2) and B subtracted again, which gives:  2(A - B + B) – B = 
2A-B. 

 In Nonrestoring method, we leave A-B as it is. Next time around the loop, the number is shifted left 
and B is added: 2(A-B)+B = 2A-B (same as above). 

 
 
 
Exercises: textbook ch 10  10.5, 10.9, 10.10, 10.15 
 
10.5 solution 

 
 
10.9 and 10.10 solution: do it yourself 
 
 
 
10.15 solution: 
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Unit 7 
Input Output Organization 

 
 
I/O plays a crucial role in any modern computer system. Therefore, a clear understanding and 
appreciation of the fundamentals of I/O operations, devices, and interfaces are of great importance. 
 
I/O subsystem 
The input-output subsystem of a computer, referred as I/O, provides an efficient mode of 
communication between the central system and outside environment. Data and programs must be 
entered into the computer memory for processing and result of computations must be must be 
recorded or displayed for the user. 
 
Peripheral devices 
Input or output devices attached to the computer are called peripherals. Keyboards, display units and 
printers are most common peripheral devices. Magnetic disks, tapes are also peripherals which provide 
auxiliary storage for the system. 
 
 
 
 
 
 
 
 
 
 
 
 
Not all input comes from people and not all intended for people. In various real time processes as 
machine tooling, assembly line procedures and chemical & industrial processes, various processes 
communicate with each other providing input and/or outputs to other processes. 
 
 
 
 
 
 
 
 
 
 
Input-Output Interface 
Input-output interface provides a method for transferring information between internal storage and 
external I/O devices. It resolves the differences between the computer and peripheral devices. The 
major differences are: 

Output Devices 
- CRT 
-  Printer (Impact, Ink Jet, 

Laser, Dot Matrix) 
-  Digital incremental Plotters 
-  Auxiliary storage 

 

Input Devices 
 Keyboard and mouse 
 Touch screen 
 Light pen 
 Auxiliary storage 
 Card reader 
 Optical and magnetic character 

readers 
 Data acquisition equipments 

 I/O organization of a computer is a function of size of the computer and the devices 
connected to it. In other words, amount of hardware computer possesses to 
communicate with no. of peripheral units, differentiate between small and large 
system. 

 IO devices communicating with people and computer usually transfer 
alphanumeric information using ASCII binary encoding. 
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 Peripherals are electromechanical and electromagnetic devices and manner of operation is 
different from that of CPU which is electronic component. 

 Data transfer rate of peripherals is slower than that of CPU. So some synchronization 
mechanism may be needed. 

 Data codes and formats in peripherals differ from the word format in CPU and memory. 
 Operating modes of peripherals are different from each other and each must be controlled so 

as not to disturb other. 
 
To resolve these differences, computer system usually include special hardware unit between CPU and 
peripherals to supervise and synchronize I/O transfers, which are called Interface units since they 
interface processor bus and peripherals. 
 
I/O Bus and Interface Modules 
Peripherals connected to a computer need special communication link to interface with CPU. This 
special link is called I/O bus. Fig below clears the idea: 
 

 
Fig: Connection of I/O bus to I/O devices 

 
Functions of an interface are as below: 

o Decodes the device address (device code) 
o Decodes the I/O commands (operation or function code) in control lines. 
o Provides signals for the peripheral controller 
o Synchronizes the data flow 
o Supervises the transfer rate between peripheral and CPU or Memory 

 
I/O commands 
The function code provided by processor in control line is called I/O command. The 
interpretation of command depends on the peripheral that the processor is addressing. There 
are 4 types of commands that an interface may receive: 

a) Control command: Issued to activate the peripheral and to inform it what to do? E.g. a magnetic 
tape unit may be instructed to backspace tape by one record. 

b) Status command: Used to check the various status conditions of the interface before a transfer 
is initiated. 

c) Data input command: Causes the interface to read the data from the peripheral and places it 
into the interface buffer. [HEY! Processor checks if data are available using status command and 
then issues a data input command. The interface places the data on data lines, where they are 
accepted by the processor] 

 I/O bus from the processor is 
attached to all peripheral interfaces. 

 I/O bus consists of Data lines, 
address and control lines. 

 To communicate with a particular 
device, the processor places a 
device address on the address lines. 
Each peripheral has an interface 
module associated with its 
interface.  



 Page 3 
 

d) Data output command: Causes the interface to read the data from the bus and saves it into the 
interface buffer. 

 
I/O Bus versus Memory Bus 
In addition to communicating with I/O, processor also has to work with memory unit. Like I/O bus, 
memory bus contains data, address and read/write control lines. 3 physical organizations, the computer 
buses can be used to communicate with memory and I/O: 

a) Use two separate buses, one for memory and other for I/O: Computer has independent sets of 
data, address and control buses, one for accessing memory and other for I/O. usually employed 
in a computer that has separate IOP (Input Output Processor). 

b) Use one common bus for both memory and I/O having separate control lines 
c) Use one common bus for memory and I/O with common control lines 

 
 
Isolated I/O versus Memory-Mapped I/O 
Question: Differentiate between isolated I/O and memory-mapped I/O. 
 
Isolated I/O Configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 Two functionally and physically 
separate buses 

o Memory bus 
o I/O bus 

 Each consists of the same three 
main groupings of wires 

o Address (example might 
be 6 wires, or up to 26 = 
64 devices) 

o Data 
o Control 

 Each device interface has a port which 
consists of a minimum of: 

o Control register 
o Status register 
o Data-in (Read) register (or buffer) 
o Data-out (Write) register (or 

buffer) 

 CPU can execute instructions to manipulate 
the I/O bus separate from the memory bus 

 Now only used in very high performance 
systems 
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Memory-Mapped I/O configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, Memory space is not only ordinary system memory. It can refer to all the addresses that the 
programmer may specify. These addresses correspond to all the possible valid addresses that the CPU 
may place on its memory bus address lines. 
 
 
 Diagram shows a hypothetical example of 

 a 10,000 byte memory space 
 Shows the principal regions 

 of the memory Space of a 
computer system 

 Random Access Memory (RAM) includes both: 
ROM: Read-only memory (0000-0999) 
RWM: Read-write memory (5000-9999) 

 Unused memory space 
No devices connected to these addresses 
If CPU tries to access, causes a hardware  
    or bus error 

 
 
 
 
 
I/O interface Unit (an example) 
I/O interface unit is shown in the block diagram below, it consists: 

 Two data registers called ports. 
 A control register 
 A status register 
 Bus buffers  
 Timing and control circuits 

 
 The memory bus is the only bus in the system 
 Device interfaces assigned to the address 

space of the CPU or processing element 
 Most common way of interfacing devices to 

computer systems 
 CPU can manipulate I/O data residing in 

interface registers with same instructions that 
are used to access memory words. 

 Typically, a segment of total address space is 
reserved for interface registers.  
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Fig: I/O interface unit 
 

 

 
 
 
 
Modes of I/O transfer (Types of I/O) 
Binary information received from an external device is usually stored in memory for later processing. 
CPU merely executes I/O instructions and may accept data from memory unit (which in fact is ultimate 
source or destination). Data transfer between the central computer and I/O devices may be handled in 
one 3 modes: 

 Programmed I/O 
 Interrupt-initiated I/O 
 Direct memory access (DMA) 

 
Programmed I/O 
Programmed I/O operations are the result of I/O instructions written in the computer program. Each 
data item transfer is initiated by an instruction in the program. Usually, the transfer is to and from a CPU 
register and peripheral. Other instructions are needed to transfer the data to and from CPU and 
memory. Transferring data under program control requires constant monitoring of the peripheral by the 
CPU. Once a data transfer is initiated, the CPU is required to monitor the interface to see when a 
transfer can again be made. It is up to the programmed instructions executed in the CPU to keep close 
tabs on everything that is taking place in the interface unit and the I/O device. In programmed I/O 
method, I/O device does not have direct access to memory. Transfer from peripheral to memory/ CPU 
requires the execution of several I/O instructions by CPU. 

 Interface communicates 
with CPU through data bus 

 Chip select (CS) and 
Register select (RS) inputs 
determine the address 
assigned to the interface. 

 I/O read and write are two 
control lines that specify 
input and output. 

 4 registers directly 
communicates with the I/O 
device attached to the 
interface. 

 Address bus selects the interface 
unit through CS and RS1 & RS0. 

 Particular interface is selected by 
the circuit (decoder) enabling CS. 

 RS1 and RS0 select one of 4 
registers. 
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Now for programmed I/O, a program is written for the computer to check the flag bit to determine if I/O 
device has put byte of data in data register of interface. 
 

 
 
 
 
Interrupt-initiated I/O 
Since polling (constantly monitoring the flag F) takes valuable CPU time, alternative for CPU is to let the 
interface inform the computer when it is ready to transfer data. This mode of transfer uses the interrupt 
facility. While the CPU is running a program, it does not check the flag. However, when the flag is set, 
the computer is momentarily interrupted from proceeding with the current program and is informed of 
the fact that the flag has been set. The CPU deviates from what it is doing to take care of the input or 
output transfer. After the transfer is completed, the computer returns to the previous program to 
continue what it was doing before the interrupt.  
The CPU responds to the interrupt signal by storing the return address from the program counter into a 
memory stack and then control branches to a service routine that processes the required I/O transfer.  
 
 

Diagram shows data transfer from I/O 
device to CPU. Device transfers bytes of 
data one at a time as they are available. 
When a byte of data is available, the 
device places it in the I/O bus and 
enables its data valid line. The interface 
accepts the byte into its data register 
and enables the data accepted line. The 
interface sets a bit in the status register 
that we will refer to as an F or "flag" bit. 

Flowchart of the program that must be written to 
the CPU is shown here. The transfer of each byte 
(assuming device is sending sequence of bytes) 
requires 3 instructions: 

a) Read status register 
b) Check F bit. If not set branch to a) and if set 

branch to c). 
c) Read data register 
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Direct Memory Access (DMA) 
• What is DMA? - DMA is a sophisticated I/O technique in which a DMA controller replaces the CPU 

and takes care of the access of both, the I/O device and the memory, for fast data transfers. Using 
DMA you get the fastest data transfer rates possible. 

• Momentum behind DMA: Interrupt driven and programmed I/O require active CPU intervention (All 
data must pass through CPU). Transfer rate is limited by processor's ability to service the device and 
hence CPU is tied up managing I/O transfer. Removing CPU form the path and letting the peripheral 
device manage the memory buses directly would improve the speed of transfer. 

• Extensively used method to capture buses is through special control signals: 
o Bus request (BR): used by DMA controller to request the CPU for buses. When this input is 

active, CPU terminates the execution the current instruction and places the address bus, 
data bus and read & write lines into a high impedance state (open circuit). 

o Bus grant (BG): CPU activates BG output to inform DMA that buses are available (in high 
impedance state). DMA now take control over buses to conduct memory transfers without 
processor intervention. When DMA terminates the transfer, it disables the BR line and CPU 
disables BG and returns to normal operation. 

• When DMA takes control of bus system, the transfer with the memory can be made in following 
two ways: 

o Burst transfer: A block sequence consisting of a number of memory words is transferred in 
continuous burst. Needed for fast devices as magnetic disks where data transmission can 
not be stopped (or slowed down) until whole block is transferred. 

o Cycle stealing: This allows DMA controller to transfer one data word at a time, after which it 
must return control of the buses to the CPU. The CPU merely delays its operation for one 
memory cycle to allow DMA to “steal” one memory cycle. 

 
DMA Transfer 
Question: what is DMA transfer? Explain. 

 
 

Fig: DMA transfer in a computer system 

• CPU communicates with the DMA 
through address and data buses. 

• DMA has its own address which 
activates RS (Register select) and DS 
(DMA select) lines. 

• When a peripheral device sends a 
DMA request, the DMA controller 
activates the BR line, informing CPU 
to leave buses. The CPU responds 
with its BG line. 

• DMA then puts current value of its 
address register into the address 
bus, initiates RD or WR signal, and 
sends a DMA acknowledge to the 
peripheral devices. 

• When BG=0, RD & WR allow CPU to 
communicate with internal DMA 
registers and when BG=1, DMA 
communicates with RAM through 
RD & WR lines. 
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Input-Output Processor (IOP) 
 
 IOP is a processor with direct memory access capability that communicates with I/O devices. In this 

configuration, the computer system can be divided into a memory unit, and a number of processors 
comprised of CPU and one or more IOPs. 

 IOP is similar to CPU except that it is designed to handle the details of I/O processing.  
 Unlike DMA controller (which is set up completely by the CPU), IOP can fetch and execute its own 

instructions. IOP instructions are designed specifically to facilitate I/O transfers. 
 Instructions that are read form memory by an IOP are called commands to differ them form 

instructions read by CPU. The command words constitute the program for the IOP. The CPU informs 
the IOP where to find commands in memory when it is time to execute the I/O program. 

 

 
 

Fig: Block diagram of computer with I/O processor 
 

The memory occupies a central position and can communicate with each processor by means of DMA. 
CPU is usually assigned the task of initiating the I/O program, from then on; IOP operates independent 
of the CPU and continues to transfer data from external devices and memory. 
 
CPU-IOP communication 
Communication between the CPU and IOP may take different forms depending on the particular 
computer used. Mostly, memory unit acts as a memory center where each processor leaves information 
for the other.  
Mechanism: CPU sends an instruction to test the IOP path. The IOP responds by inserting a status word 
in memory for the CPU to check. The bits of the status word indicate the condition of IOP and I/O device 
(“IOP overload condition”, “device busy with another transfer” etc). CPU then checks status word to 
decide what to do next. If all is in order, CPU sends the instruction to start the I/O transfer. The memory 
address received with this instruction tells the IOP where to find its program. CPU may continue with 
another program while the IOP is busy with the I/O program. When IOP terminates the transfer (using 
DMA), it sends an interrupt request to CPU. The CPU responds by issuing an instruction to read the 
status from the IOP and IOP then answers by placing the status report into specified memory location. 
By inspecting the bits in the status word, CPU determines whether the I/O operation was completed 
satisfactorily and the process is repeated again. 
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Fig: CPU-IOP communication 

 
 
Data Communication Processor (DCP) 
Data communication processor (DCP) is an I/O processor that distributes and collects data from many 
remote terminals connected through telephone and other communication lines. It is a specialized I/O 
processor designed to communicate directly with data communication networks (which may consists of 
wide variety of devices as printers, displays, sensors etc.). So DCP makes possible to operate efficiently 
in a time-sharing environment. 
Difference between IOP and DCP: Is the way processor communicates with I/O devices. 

• An I/O processor communicates with the peripherals through a common I/O bus i.e. all 
peripherals share common bus and use to transfer information to and from I/O processor. 

• DCP communicates with each terminal through a single pair of wires. Both data and control 
information are transferred in serial fashion. 

 
DCP must also communicate with the CPU and memory in the same manner as any I/O processor. 
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Serial and parallel communication 
Serial: Serial communication is the process of sending data one bit at a time, sequentially, over a 
communication channel or computer bus. This is in contrast to parallel communication. 
Parallel: Parallel communication is a method of sending several data signals simultaneously over several 
parallel channels. It contrasts with serial communication; this distinction is one way of characterizing a 
communications link. 

 
 

Modes of data transfer 
Question: What are 3 possible modes of transfer data to and from peripherals? Explain. 
Data can be transmitted in between two points in 3 different modes: 
 Simplex:  

o Carries information in one direction only. 
o Seldom used 
o Example: PC to printer, radio and TV broadcasting 

 Half-duplex: 
o Capable of transmitting in both directions but only in one  

direction at a time. 
o Turnaround time: time to switch a half-duplex  

line from one direction to other. 
o Ex: walkie-talkie" style two-way radio 

 
 Full duplex: 

o Can send and receive data in both directions simultaneously. 
o Example: Telephone, Mobile Phone, etc 
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Protocol 
The orderly transfer of information in a data link is accomplished by means of a protocol. A data link 
control protocol is a set of rules that are followed by interconnecting computers and terminals to ensure 
the orderly transfer of information. 
Purpose of data link protocol: 

o To establish and terminate a connection between two stations 
o To identify the sender and receiver 
o To identify errors 
o To handle all control functions 

Two major categories according to the message-framing technique used: 
 Character-oriented protocol 
 Bit-oriented protocol 
 
Character-oriented protocol 
It is based on the binary code of the character set (e.g. ASCII). ASCII communication control characters 
are used for the purpose of routing data, arranging the text in desired format and for the layout of the 
printed page. 
 

 
Table: ASCII communication control characters 

 
Here is the typical example to appreciate the function of the DCP: 

 
Fig: message format 

Typical message format that might be sent from a terminal to the processor is shown above. It contains 
following portions: 
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Bit-oriented protocol 
It allows the transmission of serial bit stream of any length without the implication of character 
boundaries. Messages are organized in a frame. In addition to the information field, a frame contains 
address, control and error-checking fields. 

 
Fig: Frame format for bit-oriented protocol 

A frame starts with a 8-bit flag 01111110 followed by an address and control sequence. The information 
field can be of any length. The frame check field CRC (cyclic redundancy check) detects errors in 
transmission. The ending flag represents the receiving station. 
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Unit 8 
Memory Organization 

 
Introduction 
Memory unit is an essential component in any general purpose computer since it is needed to store 
programs and data. The memory unit that communicates directly with the CPU is called the main 
memory and devices that provide backup storage are called auxiliary memory. 
 
NOTE: Auxiliary memory devices such as magnetic disk and tapes are used to store system programs, 
large data files and other backup information. Only programs and data currently needed by the 
processor reside in main memory. All other information is stored in main memory and transferred to 
main memory when needed. 
 
Memory Types 

• Sequential Access Memory (SAM): In computing, SAM is a class of data storage devices that 
read their data in sequence. This is in contrast to random access memory (RAM) where data 
can be accessed in any order. Sequential access devices are usually a form of magnetic 
memory. Magnetic sequential access memory is typically used for secondary storage in 
general-purpose computers due to their higher density at lower cost compared to RAM, as 
well as resistance to wear and non-volatility. Examples of SAM devices still in use include 
hard disks, CD-ROMs and magnetic tapes. Historically, drum memory has also been used. 
 

• Random Access Memory (RAM): RAM is a form of computer data storage. Today, it takes 
the form of integrated circuits that allow stored data to be accessed in any order with a 
worst case performance of constant time. Strictly speaking, modern types of DRAM are 
therefore not random access, as data is read in bursts, although the name DRAM / RAM has 
stuck. However, many types of SRAM, ROM and NOR flash are still random access even in a 
strict sense. RAM is often associated with volatile types of memory, where its stored 
information is lost if the power is removed. The first RAM modules to come into the market 
were created in 1951 and were sold until the late 1960s and early 1970s. 

 
Memory hierarchy 
Block diagram below shows the generic memory hierarchy. 

 
Talking roughly, lowest level of hierarchy is small, fast memory called cache where anticipated CPU 
instructions and data resides. At the next level upward in the hierarchy is main memory. The main 
memory serves CPU instruction fetches not satisfied by cache. At the top level of the hierarchy is the 
hard disk which is accessed rarely only when CPU instruction fetch is not found even in main 
memory. 
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Example: Memory hierarchy in Intel 80x86 processor family: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Primary and Secondary Memory 
 
Primary (Main) Memory 
It is a relatively large and fast memory used to store programs and data during the computer 
operation. Semiconductor integrated circuit is the principle technology used for main memory. 
 
Random Access Memory (RAM): RAM chips are available in two possible modes, static and dynamic. 
 
Static RAM: consists of internal flip-flops to store binary information. It is easier to use and has 
shorter read/write cycles. 
Dynamic RAM: stores binary information in the form of electric charges in capacitors. The stored 
charge tends to discharge with time, so DRAM words are refreshed every few milliseconds to restore 
the decaying charge. DRAM offers reduced power consumption and larger storage capacity in a 
single memory chip.  

 At the top level of the memory hierarchy are the CPU’s general purpose registers. 
 Level One on-chip Cache system is the next highest performance subsystem. 
 Next is expandable level two cache 
 Next, main memory (usually DRAM) subsystem. Relatively low-cost memory found in most 

computer systems. 
 Next is NUMA (Non Uniform Memory Access) 
 Next is Virtual Memory scheme that simulate main memory using storage on a disk drive. 
 Next in hierarchy is File Storage which uses disk media to store program data. 
 Below is Network Storage stores data in distributed fashion. 
 Near-Line Storage uses the same media as Off-Line Storage; the difference is that the 

system holds the media in a special robotic jukebox device that can automatically mount 
the desired media when some program requests it. 

 Next is Off-Line Storage that includes magnetic tapes, disk cartridges, optical disks, floppy 
diskettes and USBs. 

  Hardcopy..!  I don’t think I have to explain it. 
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Read-Only Memory (ROM): Random access ROM chips are used for storing programs that are 
permanently resident in computer and for tables of constants that do not change once computer is 
manufactured. The contents of ROM remain unchanged after power is turned off and on again. 
 
Bootstrap loader: It is initial program whose function is to start the computer operating system 
when power is turned on and is stored in ROM portion of the main memory. 
 
Computer startup: The startup of a computer consists of turning the power on and starting the 
execution of an initial program. Thus when power is turned on, the hardware of the computer sets 
the PC to the first address of the bootstrap loader. The bootstrap program loads the portion of the 
OS from the disk to main memory and control is then transferred to the OS, which prepares the 
computer for general use. 
 
RAM and ROM Chips 
RAM and ROM chips are available in a variety of sizes. If we larger memory for the system, it is 
necessary to combine a number of chips to form the required memory size. 
 
RAM Chips 
A RAM chip is better suited to communicate with CPU if it has one or more control inputs that select 
the chip only when needed. The block diagram of a RAM chip is shown below: 
 

 
Fig: Typical RAM chip (128 words of eight bits each) 
 

 
 

Fig: Function table for RAM chip 
 
ROM Chips 
Since a ROM chip can only read, data bus is unidirectional (output mode only). 
 

 
Fig: Typical ROM chip (512 byte ROM) 
 
 

  Requires 7-bit address and an 8-bit 
bidirectional data bus 

 Chip select (CS) control inputs are for 
enabling the chip only when it is 
selected by CPU. 

 

 

 The unit is in operation only 
when CS1=1 and (CS2)’=0. 

 High impedance state indicates 
open circuit i.e. output does 
not carry a signal and has no 
logic significance. 

 9 address lines to address 512 bytes 
 Two chip select (CS) inputs CS1=1 and 

(CS2)’=0 for the unit to operate, otherwise 
the data bus is in high-impedance state. 

 No need for read or write control since 
the unit can only read. 
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Memory Address Map 
The addressing of memory can be established by means of a table that specifies the memory address 
assigned to each RAM or ROM chip. This table is called memory address map and is a pictorial 
representation of assigned address space for particular chip. 
Example: Suppose computer system needs 512 bytes of RAM and 512 bytes of ROM. 

 
 
 
 
 
 
 
 
 
Memory-CPU Connection 
RAM and ROM chips are connected to CPU through data and address buses. 

 

 Component column specifies RAM or ROM chip. We use four 128 words RAM to make 512 byte size. 
 Hexadecimal address column assigns a range of addresses for each chip. 
 10 lines in address bus column: lines 1 through 7 for RAM and 1 through 9 for ROM. Distinction between 

RAM and ROM chip is made by line 10. When line 10 is 1, it selects ROM and when it is 0, CPU selects 
RAM. 

 X’s represents a binary number ranging from all-0’s to all-1’s. 

Example gives an indication of 
the interconnection complexity 
that can exist between memory 
chips and CPU. More the chips, 
more external decoders are 
required for selection among the 
chips. 

 This configuration gives 512 
bytes of RAM and 5112 
bytes of ROM 

 Each RAM receives 7 low-
order bits of the address bus 
to select a byte. 

 RAM chips are selected with 
decoder with selection input 
of line 8 and 9. 

 The selection between RAM 
and ROM is done by line 10. 
When 0, RAMs are selected 
and when 1 ROM get 
selected. 
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Auxiliary (Secondary) Memory 
The most common auxiliary memory devices used in computer systems are magnetic disks, 
magnetic tapes and optical disks. To understand fully the physical mechanism of auxiliary memory 
devices, we should have knowledge of magnetics, electronics and electromechanical systems. 
 
HEY! Read yourself about these three devices… I hope u guys have studied in your OS course. 
 
 
Virtual Memory 
 A virtual memory system attempts to optimize the use of the main memory (the higher speed 

portion) with the hard disk (the lower speed portion). In effect, virtual memory is a technique 
for using the secondary storage to extend the apparent limited size of the physical memory 
beyond its actual physical size. It is usually the case that the available physical memory space will 
not be enough to host all the parts of a given active program. 

 Virtual memory gives programmers the illusion that they have a very large memory and provides 
mechanism for dynamically translating program-generated addresses into correct main memory 
locations. The translation or mapping is handled automatically by the hardware by means of a 
mapping table. 

 
Address space and Memory Space 
An address used by the programmer is a virtual address (virtual memory addresses) and the set of 
such addresses is the Address Space. An address in main memory is called a location or physical 
address. The set of such locations is called the memory space. Thus the address space is the set of 
addresses generated by the programs as they reference instructions and data; the memory space 
consists of actual main memory locations directly addressable for processing. Generally, the address 
space is larger than the memory space. 
Example: consider main memory: 32K words (K = 1024) = 215 and auxiliary memory 1024K words = 
220. Thus we need 15 bits to address physical memory and 20 bits for virtual memory (virtual 
memory can be as large as we have auxiliary storage). 
 

 
Fig: Relation between address and memory space in a  
virtual memory system 
 
In virtual memory system, address field of an instruction code has a sufficient number of bits to 
specify all virtual addresses. In our example above we have 20-bit address of an instruction (to refer 
20-bit virtual address) but physical memory addresses are specified with 15-bits. So a table is needed 

 Here auxiliary memory has the 
capacity of storing 
information equivalent to 32 
main memories. 

 Address space N = 1024K 
 Memory space M = 32K 
 In multiprogram computer 

system, programs and data 
are transferred to and from 
auxiliary memory and main 
memory based on the 
demands imposed by the CPU.  
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to map a virtual address of 20-bits to a physical address of 15-bits. Mapping is a dynamic operation, 
which means that every address is translated immediately as a word is referenced by CPU. 

 
Fig: Memory table for mapping a virtual address 

 
 
Address Mapping using Pages 
Above memory table implementation of address mapping is simplified if the information in address 
space and memory space are each divided into groups of fixed size. 
 
Blocks (or page frame): The physical memory is broken down into groups of equal size called blocks, 
which may range from 64 to 4096 words each. 
Pages: refers to a portion of subdivided virtual memory having same size as blocks i.e. groups of 
address space. 
 
Example: consider computer with address space = 8K and memory space = 4K. 

 
 
The mapping from address space to memory space becomes easy if virtual address is represented by 
two numbers:  a page number address and a line with in the page. In a computer with 2p words per 
page, p bits are used to specify a line address and remaining high-order bits of the virtual address 
specify the page number. 
 
NOTE: line address in address space and memory space is same; only mapping required is from page 
number to a block number. 

 If we spit both spaces into groups of 
1K words, we obtain 8 pages and 4 
blocks. 

 Virtual address has 13 bits. Since each 
page consists of 210 = 1024 words, 
high-order 3 bits will specify one of 8 
pages and low-order 10 bits give the 
line address within the pages. 
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Fig: Memory table in paged system 

 
Associative Memory Page table 
 In above figure, we use random-access page table which is inefficient with respect to storage 

utilization. For example: consider address space = 1024K words and memory space = 32K words. 
If each page or block contains 1K words, the number of pages is 1024 and number of blocks 32. 
The capacity of the memory page table must be 1024 words and only 32 locations have presence 
bit equal to 1. At any given time, at least 992 locations will be empty and not in use. 

 What about making page table with number of words equal to the number of blocks in main 
memory? Obviously this is an efficient approach since size of memory is reduced and each 
location is fully utilized. 

 This method can be implemented by means of an associative memory in which each word in 
memory containing a page number with its corresponding block number. 
 

 
 
 
Page Replacement 
A virtual memory system is a combination of hardware and software techniques. A memory 
management software system handles: 

1. Which page in main memory ought to be removed to make room for a new page? 
2. When a new page is to be transferred from auxiliary memory to main memory? 

 The memory-page table 
consists of 8 words, one for 
each page. 

 The address in the page table 
denotes page number and the 
content of the word gives the 
block number where the page 
is stored in main memory. 

 Presence bit when 0 indicates 
page is not available in main 
memory and when 1 says that 
page has been transferred to 
main memory. 

 Table shows that pages 1,2,5 
and 6 are now available in 
main memory in blocks 3,0,1 
and 2 respectively. 

 The page field in each associative memory 
table word is compared with page number 
bits in an argument register (which 
contains page number in the virtual 
address), if match occurs, the word is read 
form memory and its corresponding block 
number is extracted. 

 This is the associative page table for same 
example in previous section where we 
were using random-access page table. 
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3. Where the page is to be placed in main memory? 
 

Mechanism: when a program starts execution, one or more pages are transferred into main memory 
and the page table is set to indicate their position. The program is executed from main memory until 
it attempts to reference a page that is still in auxiliary memory. This condition is called page fault. 
When page fault occurs, the execution of the present program is suspended until required page is 
brought into memory. Since loading a page from auxiliary memory to main memory is basically an 
I/O operation, OS assigns this task to I/O processor. In the mean time, control is transferred to the 
next program in memory that is waiting to be processed in the CPU. Later, when memory block has 
been assigned, the original program can resume its operation. 
When a page fault occurs in a virtual memory system, it signifies that the page referenced by the 
program is not in main memory. A new page is then transferred from auxiliary memory to main 
memory. If main memory is full, it would be necessary to remove a page from a memory block to 
make a room for a new page. The policy for choosing pages to remove is determined from the 
replacement algorithm that is used. 
GOAL: try to remove the page least likely to be referenced by in the immediate future. 
There are numerous page replacement algorithms, two of which are: 
 First-in First-out (FIFO): replaces a page that has been in memory longest time. 
 Least Recently Used (LRU): assumes that least recently used page is the better candidate for 

removal than the least recently loaded page. 
 
Memory Management Hardware 
A memory management system is a collection of hardware and software procedures for managing 
various programs (effect of multiprogramming support) residing in memory. Basic components of 
memory management unit (MMU) are: 
 A facility for dynamic storage relocation that maps logical memory references into physical 

memory addresses. 
 A provision for sharing common programs by multiple users 
 Protection of information against unauthorized access. 

 
The dynamic storage relocation hardware is a mapping process similar to paging system. 
Segment: It is more convenient to divide programs and data into logical parts called segments 
despite of fixed-size pages. A segment is a set of logically related instructions or data elements. 
Segments may be generated by the programmer or by OS. Examples are: a subroutine, an array of 
data, a table of symbols or user’s program. 
Logical address: The address generated by the segmented program is called a logical address. This is 
similar to virtual address except that logical address space is associated with variable-length 
segments rather than fixed-length pages. 
 
Segmented-Page Mapping 
The length of each segment is allowed to grow and contract according to the needs of the program 
being executed. One way of specifying the length of a segment is by associating with it a number of 
equal-sized pages.  
Consider diagram below: 
Logical address = Segment + page + Word 
Where segment specifies segment number, page field specifies page with in the segment and word 
field specifies specific word within the page. 
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Fig: Logical to physical address mapping 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HEY..! See Numerical example to clear the concept of MMU (page no. 497, Morris Mano 3rd 
edition Computer System Architecture) 
 
Memory Protection 
 Memory protection is concerned with protecting one program from unwanted interaction with 

another and preventing the occasional user performing OS functions. 
 Memory protection can be assigned to the physical address or the logical address. 

o Through physical address: assign each block in memory a number of protection bits. 
o Through logical address: better idea is to apply protection bits in logical address and 

can be done by including protection information within the segment table or 
segment register. 

 

Base Address Length Protection 

Fig: format of typical segment descriptor 
Where 
 Base address field gives the base of the page table address in segmented-page organization. 

 Mapping of logical address to 
physical address is done by using 
two tables: segment and page 
table. 

 The entry in the segment table is a 
pointer address for the page table 
base, which is then added to page 
number (given in logical address). 
The sum point to some entry in 
page table and content of that 
page is the address of physical 
block. The concatenation of block 
field with the word field produces 
final physical mapped address. 

 

Fig: Associative memory Translation 
Look-aside Buffer (TLB) 

 This is a fast associative memory (TLB) 
and holds most recently referenced 
entries. 
(Alternatively we could store above two 
tables: segment table and page table, in 
two separate small memories which really 
increases the CPU access time) 
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 Length field gives the segment size (in number of pages) 
 The protection field specifies access rights available to a particular segment. The protection 

information is set into the descriptor by the master control program of the OS. Some of the 
access rights are: 

o Full read and write privileges 
o Read only (Write protection) 
o Execute only (Program protection) 
o System only (OS protection) 

 


	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6
	Unit 7
	Unit 8

